Modified Hybrid Catalyst of Fe3O4/Cellulose Nanocomposite-Base and their Potential Application as Dye Waste Adsorbent

Article Preview

Abstract:

The population growth and the industrial revolution caused severe environmental pollution, especially pollution of clean water availability. Several ways have been conducted to overcome the pollution of clean water availability, one of which is by the adsorption of metal and cellulose-based waste materials as a hybrid catalyst. This study aims to fabricate and modify a hybrid catalyst composed of cellulose in the form of nanosized fibrils. Cellulose can be used as a catalyst by incorporating Fe from magnetite (Fe3O4) and can work effectively as an adsorbent for methylene blue (MB) dye waste. The method used in this research is a modified coprecipitation method by combining cellulose and Fe3O4 nanoparticles. Hybrid Catalyst of Fe3O4/Cellulose Nanocomposite-Base has been successfully characterized by using XRD, SEM-EDX, and UV-Vis, respectively to determine the particle structure, morphology, and adsorption capacity of the sample. The results of data analysis showed that Fe3O4/Cellulose could purify MB solution depending on the ratio of Fe3O4 and the mass of cellulose used. The higher the mass ratio of cellulose to Fe3O4, the absorbance value of the Fe3O4/Cellulose nanoparticle sample increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. F. Rusydi, D. Suherman, and N. Sumawijaya, "Pengolahan Air Limbah Tekstil Melalui Proses Koagulasi – Flokulasi dengan Menggunakan Lempung Sebagai Penyumbang Partikel Tersuspensi," Arena Tekst., vol. 31, no. 2, p.107, 2016.

DOI: 10.31266/at.v31i2.1671

Google Scholar

[2] Enrico, "Dampak Limbah Cair Industri Tekstil Terhadap Lingkungan dan Aplikasi Tehnik Eco Printing sebagai Usaha Mengurangi Limbah," Moda, vol. 1, no. 1, p.5–13, 2019.

DOI: 10.37715/moda.v1i1.706

Google Scholar

[3] S. S. Hashmi et al., "Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism," J. Indian Chem. Soc., vol. 98, no. 4, p.100019, 2021.

DOI: 10.1016/j.jics.2021.100019

Google Scholar

[4] T. Kodispathi and K. Jacinth Mispa, "Fabrication, Characterization, Ion-Exchange studies and binary separation of Polyaniline/Ti(IV) iodotungstate composite Ion-Exchanger for the treatment of water pollutants," Environ. Nanotechnology, Monit. Manag., vol. 16, no. July, 2021.

DOI: 10.1016/j.enmm.2021.100555

Google Scholar

[5] S. G. Sabaragamuwe, H. Madawala, S. R. Puri, and J. Kim, "Towards ultralow detection limits of aromatic toxicants in water using pluronic nanoemulsions and single-entity electrochemistry," Anal. Chim. Acta, vol. 1139, p.129–137, 2020.

DOI: 10.1016/j.aca.2020.09.053

Google Scholar

[6] E. U. Lolo and Y. S. Pambudi, "Penurunan Parameter Pencemar Limbah Cair Industri Tekstil Secara Koagulasi Flokulasi (Studi Kasus: IPAL Kampung Batik Laweyan, Surakarta, Jawa Tengah, Indonesia)," J. Serambi Eng., vol. 5, no. 3, p.1090–1098, 2020.

DOI: 10.32672/jse.v5i3.2072

Google Scholar

[7] Y. Zhan et al., "Magnetic recoverable MnFe2O4/cellulose nanocrystal composites as an efficient catalyst for decomposition of methylene blue," Ind. Crops Prod., vol. 122, no. June, p.422–429, 2018.

DOI: 10.1016/j.indcrop.2018.06.043

Google Scholar

[8] A. B. Albadarin, S. Solomon, T. A. Kurniawan, C. Mangwandi, and G. Walker, "Single, simultaneous and consecutive biosorption of Cr(VI) and Orange II onto chemically modified masau stones," J. Environ. Manage., vol. 204, p.365–374, 2017.

DOI: 10.1016/j.jenvman.2017.08.042

Google Scholar

[9] Z. Xu, D. Zhang, W. Chen, Y. Li, and S. Yuan, "Nanoscale iron oxides loaded granular activated carbon (GAC-NSIO) for cadmium removal," Desalin. Water Treat., vol. 57, no. 8, p.3559–3571, 2016.

DOI: 10.1080/19443994.2014.984767

Google Scholar

[10] T. Puspitasari et al., "The physicochemical characteristics of natural zeolites governing the adsorption of Pb2+ from aqueous environment," Key Eng. Mater., vol. 811 KEM, p.92–98, 2019.

DOI: 10.4028/www.scientific.net/kem.811.92

Google Scholar

[11] T. R. Sahoo and B. Prelot, Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. Elsevier Inc., 2020.

Google Scholar

[12] S. Hanif and A. Shahzad, "Removal of chromium(VI) and dye Alizarin Red S (ARS) using polymer-coated iron oxide (Fe3O4) magnetic nanoparticles by co-precipitation method," J. Nanoparticle Res., vol. 16, no. 6, 2014.

DOI: 10.1007/s11051-014-2429-8

Google Scholar

[13] D. Sondari, "Pengaruh Metoda Preparasi Terhadap Aktivitas Katalis Nikel Dengan Penyangga Titania," Reaktor, vol. 6, no. 1. p.44, 2017.

DOI: 10.14710/reaktor.6.1.44-47

Google Scholar

[14] S. Liu, Q. Yan, D. Tao, T. Yu, and X. Liu, "Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates," Carbohydr. Polym., vol. 89, no. 2, p.551–557, 2012.

DOI: 10.1016/j.carbpol.2012.03.046

Google Scholar

[15] R. Agnestisia, "Synthesis & Characterization of Magnetit (Fe3O4) and Its Applications As Adsorbent Methylene Blue," J. Sains dan Terap. Kim., vol. 11, no. 2, p.61, 2017.

DOI: 10.20527/jstk.v11i2.4039

Google Scholar

[16] Q. Lu et al., "In situ synthesis of a stable Fe3O4@cellulose nanocomposite for efficient catalytic degradation of methylene blue," Nanomaterials, vol. 9, no. 2, 2019.

DOI: 10.3390/nano9020275

Google Scholar

[17] T. I. Sari, R. U. Dewi, and Hengky, "Pembuatan Asap Cair dari Limbah Serbuk Gergajian Kayu Meranti Sebagai Penghilang Bau Latek," J. Tek. Kim., vol. 16, no. 1, p.31–37, 2009.

DOI: 10.30811/teknologi.v22i2.3130

Google Scholar

[18] S. Saputro and A. Retnaningrum, "PENGGUNAAN SERBUK GERGAJI KAYU JATI ( Tectona Grandis L . f . ) SEBAGAI ADSORBEN ION LOGAM Cd ( II ) DAN ANALISISNYA MENGGUNAKAN SOLID - PHASE SPECTROPHOTOMETRY ( SPS )," p.479–486, 2016.

DOI: 10.22487/me.v16i2.739

Google Scholar

[19] M. Shaban, E. S. H. El Ashry, H. Abdel-Hamid, A. Morsy, and S. Kandil, "Anti-biofouling of 2-acrylamido-2-methylpropane sulfonic acid grafted cellulose acetate membranes used for water desalination," Chem. Eng. Process. - Process Intensif., vol. 149, no. September 2019, p.107857, 2020.

DOI: 10.1016/j.cep.2020.107857

Google Scholar

[20] A. Asfaram, M. Ghaedi, and A. Goudarzi, "Optimization of ultrasound-assisted dispersive solid-phase microextraction based on nanoparticles followed by spectrophotometry for the simultaneous determination of dyes using experimental design," Ultrason. Sonochem., vol. 32, p.407–417, 2016.

DOI: 10.1016/j.ultsonch.2016.04.009

Google Scholar

[21] A. C. C. Arantes et al., "Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents," Carbohydr. Polym., vol. 163, p.101–107, 2017.

Google Scholar

[22] Q. Chen, Y. Shi, G. Chen, and M. Cai, "Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent," Int. J. Biol. Macromol., vol. 142, no. xxxx, p.846–854, 2020.

DOI: 10.1016/j.ijbiomac.2019.10.024

Google Scholar

[23] C. Anushree and J. Philip, "Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method," Colloids Surfaces A Physicochem. Eng. Asp., vol. 567, no. December 2018, p.193–204, 2019.

DOI: 10.1016/j.colsurfa.2019.01.057

Google Scholar

[24] S. F. Mansour, R. Al-Wafi, M. K. Ahmed, and S. Wageh, "Microstructural, morphological behavior and removal of Cr(VI) and Se(IV) from aqueous solutions by magnetite nanoparticles/PVA and cellulose acetate nanofibers," Appl. Phys. A Mater. Sci. Process., vol. 126, no. 3, 2020.

DOI: 10.1007/s00339-020-3377-z

Google Scholar

[25] X. Sun, J. Shen, D. Yu, and X. kun Ouyang, "Preparation of pH-sensitive Fe3O4@C/carboxymethyl cellulose/chitosan composite beads for diclofenac sodium delivery," Int. J. Biol. Macromol., vol. 127, p.594–605, 2019.

DOI: 10.1016/j.ijbiomac.2019.01.191

Google Scholar

[26] C. T. Tracey et al., "Hybrid cellulose nanocrystal/magnetite glucose biosensors," Carbohydr. Polym., vol. 247, no. February, p.116704, 2020.

Google Scholar

[27] R. Patwa, O. Zandraa, Z. Capáková, N. Saha, and P. Sáha, "Effect of iron-oxide nanoparticles impregnated bacterial cellulose on overall properties of alginate/casein hydrogels: Potential injectable biomaterial for wound healing applications," Polymers (Basel)., vol. 12, no. 11, p.1–21, 2020.

DOI: 10.3390/polym12112690

Google Scholar

[28] Y. Ni, J. Li, and L. Fan, "Effects of ultrasonic conditions on the interfacial property and emulsifying property of cellulose nanoparticles from ginkgo seed shells," Ultrason. Sonochem., vol. 70, no. September 2020, p.105335, 2021.

DOI: 10.1016/j.ultsonch.2020.105335

Google Scholar

[29] S. Dacrory, M. Moussa, G. Turky, and S. Kamel, "In situ synthesis of Fe3O4@ cyanoethyl cellulose composite as antimicrobial and semiconducting film," Carbohydr. Polym., vol. 236, no. September 2019, p.116032, 2020.

DOI: 10.1016/j.carbpol.2020.116032

Google Scholar

[30] A. Ibrahim, M. H. Abdel-Aziz, M. S. Zoromba, and A. F. Al-Hossainy, "Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film," Synth. Met., vol. 238, no. November 2017, p.1–13, 2018.

DOI: 10.1016/j.synthmet.2018.02.006

Google Scholar