[1]
A. F. Rusydi, D. Suherman, and N. Sumawijaya, "Pengolahan Air Limbah Tekstil Melalui Proses Koagulasi – Flokulasi dengan Menggunakan Lempung Sebagai Penyumbang Partikel Tersuspensi," Arena Tekst., vol. 31, no. 2, p.107, 2016.
DOI: 10.31266/at.v31i2.1671
Google Scholar
[2]
Enrico, "Dampak Limbah Cair Industri Tekstil Terhadap Lingkungan dan Aplikasi Tehnik Eco Printing sebagai Usaha Mengurangi Limbah," Moda, vol. 1, no. 1, p.5–13, 2019.
DOI: 10.37715/moda.v1i1.706
Google Scholar
[3]
S. S. Hashmi et al., "Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism," J. Indian Chem. Soc., vol. 98, no. 4, p.100019, 2021.
DOI: 10.1016/j.jics.2021.100019
Google Scholar
[4]
T. Kodispathi and K. Jacinth Mispa, "Fabrication, Characterization, Ion-Exchange studies and binary separation of Polyaniline/Ti(IV) iodotungstate composite Ion-Exchanger for the treatment of water pollutants," Environ. Nanotechnology, Monit. Manag., vol. 16, no. July, 2021.
DOI: 10.1016/j.enmm.2021.100555
Google Scholar
[5]
S. G. Sabaragamuwe, H. Madawala, S. R. Puri, and J. Kim, "Towards ultralow detection limits of aromatic toxicants in water using pluronic nanoemulsions and single-entity electrochemistry," Anal. Chim. Acta, vol. 1139, p.129–137, 2020.
DOI: 10.1016/j.aca.2020.09.053
Google Scholar
[6]
E. U. Lolo and Y. S. Pambudi, "Penurunan Parameter Pencemar Limbah Cair Industri Tekstil Secara Koagulasi Flokulasi (Studi Kasus: IPAL Kampung Batik Laweyan, Surakarta, Jawa Tengah, Indonesia)," J. Serambi Eng., vol. 5, no. 3, p.1090–1098, 2020.
DOI: 10.32672/jse.v5i3.2072
Google Scholar
[7]
Y. Zhan et al., "Magnetic recoverable MnFe2O4/cellulose nanocrystal composites as an efficient catalyst for decomposition of methylene blue," Ind. Crops Prod., vol. 122, no. June, p.422–429, 2018.
DOI: 10.1016/j.indcrop.2018.06.043
Google Scholar
[8]
A. B. Albadarin, S. Solomon, T. A. Kurniawan, C. Mangwandi, and G. Walker, "Single, simultaneous and consecutive biosorption of Cr(VI) and Orange II onto chemically modified masau stones," J. Environ. Manage., vol. 204, p.365–374, 2017.
DOI: 10.1016/j.jenvman.2017.08.042
Google Scholar
[9]
Z. Xu, D. Zhang, W. Chen, Y. Li, and S. Yuan, "Nanoscale iron oxides loaded granular activated carbon (GAC-NSIO) for cadmium removal," Desalin. Water Treat., vol. 57, no. 8, p.3559–3571, 2016.
DOI: 10.1080/19443994.2014.984767
Google Scholar
[10]
T. Puspitasari et al., "The physicochemical characteristics of natural zeolites governing the adsorption of Pb2+ from aqueous environment," Key Eng. Mater., vol. 811 KEM, p.92–98, 2019.
DOI: 10.4028/www.scientific.net/kem.811.92
Google Scholar
[11]
T. R. Sahoo and B. Prelot, Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. Elsevier Inc., 2020.
Google Scholar
[12]
S. Hanif and A. Shahzad, "Removal of chromium(VI) and dye Alizarin Red S (ARS) using polymer-coated iron oxide (Fe3O4) magnetic nanoparticles by co-precipitation method," J. Nanoparticle Res., vol. 16, no. 6, 2014.
DOI: 10.1007/s11051-014-2429-8
Google Scholar
[13]
D. Sondari, "Pengaruh Metoda Preparasi Terhadap Aktivitas Katalis Nikel Dengan Penyangga Titania," Reaktor, vol. 6, no. 1. p.44, 2017.
DOI: 10.14710/reaktor.6.1.44-47
Google Scholar
[14]
S. Liu, Q. Yan, D. Tao, T. Yu, and X. Liu, "Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates," Carbohydr. Polym., vol. 89, no. 2, p.551–557, 2012.
DOI: 10.1016/j.carbpol.2012.03.046
Google Scholar
[15]
R. Agnestisia, "Synthesis & Characterization of Magnetit (Fe3O4) and Its Applications As Adsorbent Methylene Blue," J. Sains dan Terap. Kim., vol. 11, no. 2, p.61, 2017.
DOI: 10.20527/jstk.v11i2.4039
Google Scholar
[16]
Q. Lu et al., "In situ synthesis of a stable Fe3O4@cellulose nanocomposite for efficient catalytic degradation of methylene blue," Nanomaterials, vol. 9, no. 2, 2019.
DOI: 10.3390/nano9020275
Google Scholar
[17]
T. I. Sari, R. U. Dewi, and Hengky, "Pembuatan Asap Cair dari Limbah Serbuk Gergajian Kayu Meranti Sebagai Penghilang Bau Latek," J. Tek. Kim., vol. 16, no. 1, p.31–37, 2009.
DOI: 10.30811/teknologi.v22i2.3130
Google Scholar
[18]
S. Saputro and A. Retnaningrum, "PENGGUNAAN SERBUK GERGAJI KAYU JATI ( Tectona Grandis L . f . ) SEBAGAI ADSORBEN ION LOGAM Cd ( II ) DAN ANALISISNYA MENGGUNAKAN SOLID - PHASE SPECTROPHOTOMETRY ( SPS )," p.479–486, 2016.
DOI: 10.22487/me.v16i2.739
Google Scholar
[19]
M. Shaban, E. S. H. El Ashry, H. Abdel-Hamid, A. Morsy, and S. Kandil, "Anti-biofouling of 2-acrylamido-2-methylpropane sulfonic acid grafted cellulose acetate membranes used for water desalination," Chem. Eng. Process. - Process Intensif., vol. 149, no. September 2019, p.107857, 2020.
DOI: 10.1016/j.cep.2020.107857
Google Scholar
[20]
A. Asfaram, M. Ghaedi, and A. Goudarzi, "Optimization of ultrasound-assisted dispersive solid-phase microextraction based on nanoparticles followed by spectrophotometry for the simultaneous determination of dyes using experimental design," Ultrason. Sonochem., vol. 32, p.407–417, 2016.
DOI: 10.1016/j.ultsonch.2016.04.009
Google Scholar
[21]
A. C. C. Arantes et al., "Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents," Carbohydr. Polym., vol. 163, p.101–107, 2017.
Google Scholar
[22]
Q. Chen, Y. Shi, G. Chen, and M. Cai, "Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent," Int. J. Biol. Macromol., vol. 142, no. xxxx, p.846–854, 2020.
DOI: 10.1016/j.ijbiomac.2019.10.024
Google Scholar
[23]
C. Anushree and J. Philip, "Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method," Colloids Surfaces A Physicochem. Eng. Asp., vol. 567, no. December 2018, p.193–204, 2019.
DOI: 10.1016/j.colsurfa.2019.01.057
Google Scholar
[24]
S. F. Mansour, R. Al-Wafi, M. K. Ahmed, and S. Wageh, "Microstructural, morphological behavior and removal of Cr(VI) and Se(IV) from aqueous solutions by magnetite nanoparticles/PVA and cellulose acetate nanofibers," Appl. Phys. A Mater. Sci. Process., vol. 126, no. 3, 2020.
DOI: 10.1007/s00339-020-3377-z
Google Scholar
[25]
X. Sun, J. Shen, D. Yu, and X. kun Ouyang, "Preparation of pH-sensitive Fe3O4@C/carboxymethyl cellulose/chitosan composite beads for diclofenac sodium delivery," Int. J. Biol. Macromol., vol. 127, p.594–605, 2019.
DOI: 10.1016/j.ijbiomac.2019.01.191
Google Scholar
[26]
C. T. Tracey et al., "Hybrid cellulose nanocrystal/magnetite glucose biosensors," Carbohydr. Polym., vol. 247, no. February, p.116704, 2020.
Google Scholar
[27]
R. Patwa, O. Zandraa, Z. Capáková, N. Saha, and P. Sáha, "Effect of iron-oxide nanoparticles impregnated bacterial cellulose on overall properties of alginate/casein hydrogels: Potential injectable biomaterial for wound healing applications," Polymers (Basel)., vol. 12, no. 11, p.1–21, 2020.
DOI: 10.3390/polym12112690
Google Scholar
[28]
Y. Ni, J. Li, and L. Fan, "Effects of ultrasonic conditions on the interfacial property and emulsifying property of cellulose nanoparticles from ginkgo seed shells," Ultrason. Sonochem., vol. 70, no. September 2020, p.105335, 2021.
DOI: 10.1016/j.ultsonch.2020.105335
Google Scholar
[29]
S. Dacrory, M. Moussa, G. Turky, and S. Kamel, "In situ synthesis of Fe3O4@ cyanoethyl cellulose composite as antimicrobial and semiconducting film," Carbohydr. Polym., vol. 236, no. September 2019, p.116032, 2020.
DOI: 10.1016/j.carbpol.2020.116032
Google Scholar
[30]
A. Ibrahim, M. H. Abdel-Aziz, M. S. Zoromba, and A. F. Al-Hossainy, "Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film," Synth. Met., vol. 238, no. November 2017, p.1–13, 2018.
DOI: 10.1016/j.synthmet.2018.02.006
Google Scholar