Tensile Strength of Abaca Fiber Reinforced Polymer Composite Fabricated by Press Method: Effect of Fiber Content and Fiber Orientation

Article Preview

Abstract:

The paper reported the study on the tensile strength of polymer composite reinforced with abaca fiber and polyester matrix. The effect of fiber weight content and fiber orientation on the tensile strength of the abaca composite were investigated in the study. The abaca composite panel was fabricated using press method with 3 levels of the fiber weight content (20%, 30% and 40%) and 3 levels of fiber orientation (00, 450 and 900). The tensile specimen was prepared according to ASTM D3039 standard. The tensile test was conducted using MTS Landmark servo hydraulic testing machine with a tensile speed of 2 mm/min. The result of the experiment showed that both of fiber weight content and fiber orientation gave significant effect on the tensile strength of the abaca composite. The highest tensile strength was 61.9 MPa, produced by the abaca composite panel with fiber weight content 30% and fiber orientation 00. According to the standard, the tensile strength has fulfilled the requirements as a non-structural material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-83

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kamarudin, K.A., Nor, M.K.M., Hamid, I.A. and Abdullah, A.S., 2019. Progressive damage modeling of synthetic fiber polymer composites under ballistic impact. In Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp.115-132). Woodhead Publishing.

DOI: 10.1016/b978-0-08-102289-4.00007-2

Google Scholar

[2] Liu, T., Liu, X. and Feng, P., 2020. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites Part B: Engineering, 191, p.107958.

DOI: 10.1016/j.compositesb.2020.107958

Google Scholar

[3] Hung, P.Y., Lau, K.T., Cheng, L.K., Leng, J. and Hui, D., 2018. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Composites Part B: Engineering, 133, pp.86-90.

DOI: 10.1016/j.compositesb.2017.09.026

Google Scholar

[4] Iqbal, M., Bahri, S. and Akram, A., 2019, May. Effect of cutting parameter on tool wear of HSS tool in drilling of Kevlar composite panel. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p.012078). IOP Publishing.

DOI: 10.1088/1757-899x/523/1/012078

Google Scholar

[5] Iqbal, M., Tadjuddin, M. and Abhang, L.B., 2020. The Investigation of Hole Delamination in Drilling Kevlar Composite Panel Using HSS Drill Tool. In Defect and Diffusion Forum (Vol. 402, pp.108-114). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ddf.402.108

Google Scholar

[6] Boufaida, Z., Farge, L., André, S. and Meshaka, Y., 2015. Influence of the fiber/matrix strength on the mechanical properties of a glass fiber/thermoplastic-matrix plain weave fabric composite. Composites Part A: Applied Science and Manufacturing, 75, pp.28-38.

DOI: 10.1016/j.compositesa.2015.04.012

Google Scholar

[7] Nazaruddin, N., Akram, A., Hasanuddin, I., Iqbal, M., Kurniawan, R. and Putra, R., 2019, May. Mechanical properties of glass fiber reinforced polyester resin for use as the wall of the Acehnese boat 'Thep-Thep'. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p.012080). IOP Publishing.

DOI: 10.1088/1757-899x/523/1/012080

Google Scholar

[8] Aulia, T.B., 2015. Bending capacity analysis of high-strength reinforced concrete beams using environmentally friendly synthetic fiber composites. Procedia Engineering, 125, pp.1121-1128.

DOI: 10.1016/j.proeng.2015.11.136

Google Scholar

[9] Ali, B.A., Sapuan, S.M., Zainudin, E.S. and Othman, M., 2015. Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components. Journal of Cleaner Production, 107, pp.557-567.

DOI: 10.1016/j.jclepro.2015.05.084

Google Scholar

[10] Tanjung, F.A. and Zulkepli, N.N., 2022. Thermoplastic polymer/wool composites. In Wool Fiber Reinforced Polymer Composites (pp.155-179). Woodhead Publishing.

DOI: 10.1016/b978-0-12-824056-4.00018-2

Google Scholar

[11] Zhang, Q., Ma, Y., Qi, Z., Jia, C., Yao, Y. and Zhang, D., 2022. Optimisation on uniformity and compressibility of rapeseed straw cellulose fiber mixtures for straw/mineral hybrid natural fiber composite. Industrial Crops and Products, 189, p.115852.

DOI: 10.1016/j.indcrop.2022.115852

Google Scholar

[12] Iqbal, M., Konneh, M., Md Said, A.Y.B. and Bin Mohd Zaini, A.F., 2014. Surface Quality of High Speed Milling of Silicon Carbide by Using Diamond Coated Tool. In Applied Mechanics and Materials (Vol. 446, pp.275-278). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/amm.446-447.275

Google Scholar

[13] Tezara, C., Hadi, A.E., Siregar, J.P., Muhamad, Z., Hamdan, M.H.M., Oumer, A.N., Jaafar, J., Irawan, A.P., Rihayat, T. and Fitriyana, D.F., 2021. The effect of hybridisation on mechanical properties and water absorption behaviour of woven jute/ramie reinforced epoxy composites. Polymers, 13(17), p.2964.

DOI: 10.3390/polym13172964

Google Scholar

[14] Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S. and Alotman, O.Y., 2018. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, pp.713-729.

DOI: 10.1016/j.conbuildmat.2018.04.143

Google Scholar

[15] Omar, M.F., Jaya, H. and Zulkepli, N.N., 2020. Kenaf fiber reinforced composite in the automotive industry.

DOI: 10.1016/b978-0-12-803581-8.11429-8

Google Scholar

[16] Bachtiar, D., Sapuan, S.M., Khalina, A., Zainudin, E.S. and Dahlan, K.Z.M., 2012. Flexural and impact properties of chemically treated sugar palm fiber reinforced high impact polystyrene composites. Fibers and Polymers, 13(7), pp.894-898.

DOI: 10.1007/s12221-012-0894-1

Google Scholar

[17] Richter, S., Stromann, K. and Müssig, J., 2013. Abacá (Musa textilis) grades and their properties—A study of reproducible fibre characterization and a critical evaluation of existing grading systems. Industrial Crops and Products, 42, pp.601-612.

DOI: 10.1016/j.indcrop.2012.06.025

Google Scholar

[18] Pickering, K.L., Efendy, M.A. and Le, T.M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, pp.98-112.

DOI: 10.1016/j.compositesa.2015.08.038

Google Scholar

[19] Mohd Nordin, N., Anuar, H., Buys, Y.F., Ali, F., Thomas, S. and Mohd Nasir, N.A., 2021. Effect of freeze‐dried durian skin nanofiber on the physical properties of poly (lactic acid) biocomposites. Polymer Composites, 42(2), pp.842-848.

DOI: 10.1002/pc.25869

Google Scholar

[20] Rizal, S., Gopakumar, D.A., Huzni, S., Thalib, S., Syakir, M.I., Owolabi, F.T., Aprilla, N.S., Paridah, M.T. and Khalil, H.A., 2019. Tailoring the effective properties of typha fiber reinforced polymer composite via alkali treatment. BioResources, 14(3), pp.5630-5645.

DOI: 10.15376/biores.14.3.5630-5645

Google Scholar

[21] Amiri, A., Burkart, V., Yu, A., Webster, D. and Ulven, C., 2018. The potential of natural composite materials in structural design. In Sustainable composites for aerospace applications (pp.269-291). Woodhead Publishing.

DOI: 10.1016/b978-0-08-102131-6.00013-x

Google Scholar

[22] Shahinur, S. and Hasan, M., 2020. Natural fiber and synthetic fiber composites: comparison of properties, performance, cost and environmental benefits.

DOI: 10.1016/b978-0-12-803581-8.10994-4

Google Scholar

[23] Rahman, R. and Putra, S.Z.F.S., 2019. Tensile properties of natural and synthetic fiber-reinforced polymer composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, pp.81-102.

DOI: 10.1016/b978-0-08-102292-4.00005-9

Google Scholar

[24] Firsa, T., Tadjuddin, M., Iqbal, M. and Putra, R.S., 2021. Study of the Sound Absorption Characteristics of Abaca and Coconut Coir Fibers. In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering (pp.519-531). Springer, Singapore.

DOI: 10.1007/978-981-16-0736-3_47

Google Scholar

[25] Iqbal, M., Aminanda, Y., Firsa, T. and Ali, M., 2020. Bending strength of polyester composites reinforced with stitched random orientation and plain weave abaca fiber. In IOP conference series: materials science and engineering (Vol. 739, No. 1, p.012035). IOP Publishing.

DOI: 10.1088/1757-899x/739/1/012035

Google Scholar

[26] Iqbal, M., Satrianda, M.S., Firsa, T., Azan, S.A. and Abhang, L.B., 2021. Bending Strength of Fiber Metal Laminate Based on Abaca Fiber Reinforced Polyester and Aluminum Alloy Metal Sheet. In Key Engineering Materials (Vol. 892, pp.134-141). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/kem.892.134

Google Scholar

[27] Iqbal, M., Azan, S.A., Rahmadtullah, R. and Abhang, L.B., 2022. Flexural Strength and Physical Properties of Cement Board Reinforced with Abaca Fiber. In Key Engineering Materials (Vol. 930, pp.169-178). Trans Tech Publications Ltd.

DOI: 10.4028/p-zn91x1

Google Scholar

[28] Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M., 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.

Google Scholar

[29] Konneh, M., Iqbal, M. and Faiz, N.M.A., 2012. Diamond Coated End Mills in Machining Silicon Carbide. In Advanced Materials Research (Vol. 576, pp.531-534). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/amr.576.531

Google Scholar

[30] Abhang, L.B., Iqbal, M. and Hameedullah, M., 2020. Optimization of machining process parameters using moora method. In Defect and Diffusion Forum (Vol. 402, pp.81-89). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ddf.402.81

Google Scholar