[1]
Kamarudin, K.A., Nor, M.K.M., Hamid, I.A. and Abdullah, A.S., 2019. Progressive damage modeling of synthetic fiber polymer composites under ballistic impact. In Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp.115-132). Woodhead Publishing.
DOI: 10.1016/b978-0-08-102289-4.00007-2
Google Scholar
[2]
Liu, T., Liu, X. and Feng, P., 2020. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites Part B: Engineering, 191, p.107958.
DOI: 10.1016/j.compositesb.2020.107958
Google Scholar
[3]
Hung, P.Y., Lau, K.T., Cheng, L.K., Leng, J. and Hui, D., 2018. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Composites Part B: Engineering, 133, pp.86-90.
DOI: 10.1016/j.compositesb.2017.09.026
Google Scholar
[4]
Iqbal, M., Bahri, S. and Akram, A., 2019, May. Effect of cutting parameter on tool wear of HSS tool in drilling of Kevlar composite panel. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p.012078). IOP Publishing.
DOI: 10.1088/1757-899x/523/1/012078
Google Scholar
[5]
Iqbal, M., Tadjuddin, M. and Abhang, L.B., 2020. The Investigation of Hole Delamination in Drilling Kevlar Composite Panel Using HSS Drill Tool. In Defect and Diffusion Forum (Vol. 402, pp.108-114). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/ddf.402.108
Google Scholar
[6]
Boufaida, Z., Farge, L., André, S. and Meshaka, Y., 2015. Influence of the fiber/matrix strength on the mechanical properties of a glass fiber/thermoplastic-matrix plain weave fabric composite. Composites Part A: Applied Science and Manufacturing, 75, pp.28-38.
DOI: 10.1016/j.compositesa.2015.04.012
Google Scholar
[7]
Nazaruddin, N., Akram, A., Hasanuddin, I., Iqbal, M., Kurniawan, R. and Putra, R., 2019, May. Mechanical properties of glass fiber reinforced polyester resin for use as the wall of the Acehnese boat 'Thep-Thep'. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p.012080). IOP Publishing.
DOI: 10.1088/1757-899x/523/1/012080
Google Scholar
[8]
Aulia, T.B., 2015. Bending capacity analysis of high-strength reinforced concrete beams using environmentally friendly synthetic fiber composites. Procedia Engineering, 125, pp.1121-1128.
DOI: 10.1016/j.proeng.2015.11.136
Google Scholar
[9]
Ali, B.A., Sapuan, S.M., Zainudin, E.S. and Othman, M., 2015. Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components. Journal of Cleaner Production, 107, pp.557-567.
DOI: 10.1016/j.jclepro.2015.05.084
Google Scholar
[10]
Tanjung, F.A. and Zulkepli, N.N., 2022. Thermoplastic polymer/wool composites. In Wool Fiber Reinforced Polymer Composites (pp.155-179). Woodhead Publishing.
DOI: 10.1016/b978-0-12-824056-4.00018-2
Google Scholar
[11]
Zhang, Q., Ma, Y., Qi, Z., Jia, C., Yao, Y. and Zhang, D., 2022. Optimisation on uniformity and compressibility of rapeseed straw cellulose fiber mixtures for straw/mineral hybrid natural fiber composite. Industrial Crops and Products, 189, p.115852.
DOI: 10.1016/j.indcrop.2022.115852
Google Scholar
[12]
Iqbal, M., Konneh, M., Md Said, A.Y.B. and Bin Mohd Zaini, A.F., 2014. Surface Quality of High Speed Milling of Silicon Carbide by Using Diamond Coated Tool. In Applied Mechanics and Materials (Vol. 446, pp.275-278). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amm.446-447.275
Google Scholar
[13]
Tezara, C., Hadi, A.E., Siregar, J.P., Muhamad, Z., Hamdan, M.H.M., Oumer, A.N., Jaafar, J., Irawan, A.P., Rihayat, T. and Fitriyana, D.F., 2021. The effect of hybridisation on mechanical properties and water absorption behaviour of woven jute/ramie reinforced epoxy composites. Polymers, 13(17), p.2964.
DOI: 10.3390/polym13172964
Google Scholar
[14]
Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S. and Alotman, O.Y., 2018. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, pp.713-729.
DOI: 10.1016/j.conbuildmat.2018.04.143
Google Scholar
[15]
Omar, M.F., Jaya, H. and Zulkepli, N.N., 2020. Kenaf fiber reinforced composite in the automotive industry.
DOI: 10.1016/b978-0-12-803581-8.11429-8
Google Scholar
[16]
Bachtiar, D., Sapuan, S.M., Khalina, A., Zainudin, E.S. and Dahlan, K.Z.M., 2012. Flexural and impact properties of chemically treated sugar palm fiber reinforced high impact polystyrene composites. Fibers and Polymers, 13(7), pp.894-898.
DOI: 10.1007/s12221-012-0894-1
Google Scholar
[17]
Richter, S., Stromann, K. and Müssig, J., 2013. Abacá (Musa textilis) grades and their properties—A study of reproducible fibre characterization and a critical evaluation of existing grading systems. Industrial Crops and Products, 42, pp.601-612.
DOI: 10.1016/j.indcrop.2012.06.025
Google Scholar
[18]
Pickering, K.L., Efendy, M.A. and Le, T.M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, pp.98-112.
DOI: 10.1016/j.compositesa.2015.08.038
Google Scholar
[19]
Mohd Nordin, N., Anuar, H., Buys, Y.F., Ali, F., Thomas, S. and Mohd Nasir, N.A., 2021. Effect of freeze‐dried durian skin nanofiber on the physical properties of poly (lactic acid) biocomposites. Polymer Composites, 42(2), pp.842-848.
DOI: 10.1002/pc.25869
Google Scholar
[20]
Rizal, S., Gopakumar, D.A., Huzni, S., Thalib, S., Syakir, M.I., Owolabi, F.T., Aprilla, N.S., Paridah, M.T. and Khalil, H.A., 2019. Tailoring the effective properties of typha fiber reinforced polymer composite via alkali treatment. BioResources, 14(3), pp.5630-5645.
DOI: 10.15376/biores.14.3.5630-5645
Google Scholar
[21]
Amiri, A., Burkart, V., Yu, A., Webster, D. and Ulven, C., 2018. The potential of natural composite materials in structural design. In Sustainable composites for aerospace applications (pp.269-291). Woodhead Publishing.
DOI: 10.1016/b978-0-08-102131-6.00013-x
Google Scholar
[22]
Shahinur, S. and Hasan, M., 2020. Natural fiber and synthetic fiber composites: comparison of properties, performance, cost and environmental benefits.
DOI: 10.1016/b978-0-12-803581-8.10994-4
Google Scholar
[23]
Rahman, R. and Putra, S.Z.F.S., 2019. Tensile properties of natural and synthetic fiber-reinforced polymer composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, pp.81-102.
DOI: 10.1016/b978-0-08-102292-4.00005-9
Google Scholar
[24]
Firsa, T., Tadjuddin, M., Iqbal, M. and Putra, R.S., 2021. Study of the Sound Absorption Characteristics of Abaca and Coconut Coir Fibers. In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering (pp.519-531). Springer, Singapore.
DOI: 10.1007/978-981-16-0736-3_47
Google Scholar
[25]
Iqbal, M., Aminanda, Y., Firsa, T. and Ali, M., 2020. Bending strength of polyester composites reinforced with stitched random orientation and plain weave abaca fiber. In IOP conference series: materials science and engineering (Vol. 739, No. 1, p.012035). IOP Publishing.
DOI: 10.1088/1757-899x/739/1/012035
Google Scholar
[26]
Iqbal, M., Satrianda, M.S., Firsa, T., Azan, S.A. and Abhang, L.B., 2021. Bending Strength of Fiber Metal Laminate Based on Abaca Fiber Reinforced Polyester and Aluminum Alloy Metal Sheet. In Key Engineering Materials (Vol. 892, pp.134-141). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/kem.892.134
Google Scholar
[27]
Iqbal, M., Azan, S.A., Rahmadtullah, R. and Abhang, L.B., 2022. Flexural Strength and Physical Properties of Cement Board Reinforced with Abaca Fiber. In Key Engineering Materials (Vol. 930, pp.169-178). Trans Tech Publications Ltd.
DOI: 10.4028/p-zn91x1
Google Scholar
[28]
Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M., 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
Google Scholar
[29]
Konneh, M., Iqbal, M. and Faiz, N.M.A., 2012. Diamond Coated End Mills in Machining Silicon Carbide. In Advanced Materials Research (Vol. 576, pp.531-534). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amr.576.531
Google Scholar
[30]
Abhang, L.B., Iqbal, M. and Hameedullah, M., 2020. Optimization of machining process parameters using moora method. In Defect and Diffusion Forum (Vol. 402, pp.81-89). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/ddf.402.81
Google Scholar