Effect of Fiber’s Size on Acoustic Absorption of Abaca Fiber/Epoxy Resin Composites

Article Preview

Abstract:

This study develops an absorber containing abaca fiber (Musa Textiles) and epoxy resin as a binder. The ability to absorb sound energy is related to the pore’s size present in the absorber. One of the methods to create porosity is to vary the length of fiber, which is 1, 10 mm, 15 mm and 20 mm. Before the fiber is cut to be certain length, it is treated employing NaOH alkalization and acetic acid hydrolysis. The characterization carried out includes density, morphology and absorption coefficient measurement using impedance tubes. Moreover, the fibers are measured for the density, then continued to determine the porosity and air flow resistivity using the Konzeny-Carman equation. The air flow resistivity parameter is utilized to determine the absorption coefficient using Delany-Bazley model. The value of the absorption coefficient from experiments using impedance tubes and based on theoretical analysis shows a similar trend curve. The results show that the fiber with the length of 20 mm exhibits the highest sound absorption coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.N. Wang, J.H. Torng, Experimental study of the absorption characteristics of some porous fibrous materials, Appl. Acoust. 62 (2001) 447–459.

DOI: 10.1016/s0003-682x(00)00043-8

Google Scholar

[2] L. Lipworth, C. La Vecchia, C. Bosetti, J.K. McLaughlin, Occupational exposure to rock wool and glass wool and risk of cancers of the lung and the head and neck: A systematic review and meta-analysis, J. Occup. Environ. Med. 51 (2009) 1075–1087.

DOI: 10.1097/jom.0b013e3181b35125

Google Scholar

[3] C. Elanchezhian, B.V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, M.K. Saravanakumar, Review on mechanical properties of natural fiber composites., Mater. Today Proc. 5 (2018) 1785–1790.

DOI: 10.1016/j.matpr.2017.11.276

Google Scholar

[4] M. Hosseini Fouladi, M. Ayub, M. Jailani Mohd Nor, Analysis of coir fiber acoustical characteristics, Appl. Acoust. 72 (2011) 35–42.

DOI: 10.1016/j.apacoust.2010.09.007

Google Scholar

[5] N.H. Sari, I.N.G. Wardana, Y.S. Irawan, E. Siswanto, Corn Husk Fiber-Polyester Composites as Sound Absorber : Nonacoustical and Acoustical Properties, 2017 (2017).

DOI: 10.1155/2017/4319389

Google Scholar

[6] A. Putraa, Y. Abdullaha, H. Efendya, W.M. Farida, R. Ayoba, M.S. Pya, Utilizing Sugarcane Wasted Fibers As A Sustainable Acoustic Absorber, 53 (2013) 632–638.

Google Scholar

[7] Z.Y. Lim, A. Putra, M.J.M. Nor, M.Y. Yaakob, Sound absorption performance of natural kenaf fi bres, Appl. Acoust. 130 (2018) 107–114..

DOI: 10.1016/j.apacoust.2017.09.012

Google Scholar

[8] C.O.B. Mendes, M.A. de Araújo Nunes, Acoustic performance of the banana pseudostem fiber, Appl. Acoust. 191 (2022).

DOI: 10.1016/j.apacoust.2022.108657

Google Scholar

[9] R.R. Dancel, Abaca Fiber as a Retrofitting Material, Proc. Res. Int. Conf. (2018) 1–5.

Google Scholar

[10] E.A. Simbaña, P.E. Ordóñez, Y.F. Ordóñez, V.H. Guerrero, M.C. Mera, E.A. Carvajal, Abaca: Cultivation, obtaining fibre and potential uses, Handb. Nat. Fibres Second Ed. 1 (2020) 197–218.

DOI: 10.1016/b978-0-12-818398-4.00008-6

Google Scholar

[11] A.K. Bledzki, A. Jaszkiewicz, D. Scherzer, Mechanical properties of PLA composites with man-made cellulose and abaca fibres, Compos. Part A Appl. Sci. Manuf. 40 (2009) 404–412.

DOI: 10.1016/j.compositesa.2009.01.002

Google Scholar

[12] B. Vijaya Ramnath, S. Junaid Kokan, R. Niranjan Raja, R. Sathyanarayanan, C. Elanchezhian, A. Rajendra Prasad, V.M. Manickavasagam, Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite, Mater. Des. 51 (2013) 357–366.

DOI: 10.1016/j.matdes.2013.03.102

Google Scholar

[13] A.K. Bledzki, A.A. Mamun, A. Jaszkiewicz, K. Erdmann, Polypropylene composites with enzyme modified abaca fibre, Compos. Sci. Technol. 70 (2010) 854–860.

DOI: 10.1016/j.compscitech.2010.02.003

Google Scholar

[14] F. Vilaseca, A. Valadez-Gonzalez, P.J. Herrera-Franco, M.À. Pèlach, J.P. López, P. Mutjé, Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties, Bioresour. Technol. 101 (2010) 387–395.

DOI: 10.1016/j.biortech.2009.07.066

Google Scholar

[15] A. Kumar Sinha, H.K. Narang, S. Bhattacharya, Evaluation of Bending Strength of Abaca Reinforced Polymer Composites, Mater. Today Proc. 5 (2018) 7284–7288.

DOI: 10.1016/j.matpr.2017.11.396

Google Scholar

[16] R. Punyamurthy, D. Sampathkumar, B. Bennehalli, R. Patel, S.C. Venkateshappa, Abaca Fiber Reinforced Epoxy Composites : Evaluation of Impact Strength International Journal of Sciences : Abaca Fiber Reinforced Epoxy Composites : Evaluation of Impact Strength, Int. J. Sci. Basic Appl. Res. (2014) 305–317. http://gssrr.org/index.php?journal= JournalOfBasicAndApplied.

DOI: 10.1016/j.ctmat.2015.03.003

Google Scholar

[17] S. Sambandamoorthy, V. Narayanan, L.B.M. Chinnapandi, A. Aziz, Impact of fiber length and surface modification on the acoustic behaviour of jute fiber, Appl. Acoust. 173 (2021).

DOI: 10.1016/j.apacoust.2020.107677

Google Scholar

[18] U. Berardi, G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Build. Environ. 94 (2015) 840–852.

DOI: 10.1016/j.buildenv.2015.05.029

Google Scholar

[19] U. Berardi, G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Build. Environ. 94 (2015) 840–852.

DOI: 10.1016/j.buildenv.2015.05.029

Google Scholar