[1]
M. Li, H. Li, Z. Zhang, W. Shi, J. Liu, Y. Hu, Y. Wu, Effect of precipitates on properties of cold-rolled Al–Mg–Si–Sc–Zr alloy with higher temperature aging, Materials Science and Technology. 34(10) (2018) 1246-1251.
DOI: 10.1080/02670836.2018.1444922
Google Scholar
[2]
D. G. Eskin, M. L. Kharakterova, The Effect of silicon and copper on the precipitation hardening of sheets of a 6XXX-series alloy, Mater. Tehnol. 35(1-2) (2001) 5-8.
Google Scholar
[3]
C. Poletti, M. Rodriguez-Hortalá, M. Hauser, C. Sommitsch, Microstructure development in hot deformed AA6082, Materials Science and Engineering: A. 528(6) (2011) 2423-2430.
DOI: 10.1016/j.msea.2010.11.048
Google Scholar
[4]
F. Hichem, G. Rebai, Study of dispersoid particles in two Al–Mg–Si aluminium alloys and their effects on the recrystallization, Appl. Phys. A. 119 (2015) 285-289.
DOI: 10.1007/s00339-014-8963-5
Google Scholar
[5]
L. Blƚaz, P. Kwapisiński, Simple mathematical model for prediction of recrystallization in copper, Archives of Metallurgy and Materials. 54(1) (2009) 161-170.
Google Scholar
[6]
H. Farh, H. Belghit, T. Ziar, A. Noua, F. Serrad, The cold rolling effects on the microstructure and micro-hardness of Al-Mg-Si alloy, Diffusion Foundations 18 (2018) 14-18.
DOI: 10.4028/www.scientific.net/df.18.14
Google Scholar
[7]
M. Kolar, K. O. Pedersen, S. Gulbrandsen-Dahl, K. Teichmann, K. Marthinsen, Effect of pre-deformation on mechanical response of an artificially aged Al-Mg-Si alloy, Materials Transactions. 52(79) (2011) 1356- 1362.
DOI: 10.2320/matertrans.l-mz201127
Google Scholar
[8]
A. Segatori, A. Foydl, L. Donati, N. Ben Khalifa, A. Brosius, L. Tomesani, A. E. Tekkaya, Investigation and prediction of grain texture evolution in AA6082, The 14th International ESAFORM Conference on Material Formng, AIP Conference Proceedings. 1353 (2011) 449-454.
DOI: 10.1063/1.3589556
Google Scholar
[9]
R. Hu, T. Ogura, H. Tezuka, T. Sato, Q. Liu, Dispersoid formation and recrystallization behavior in an Al-Mg-Si-Mn alloy, J. Mater. Sci. Technol. 26(3) (2010) 237-243.
DOI: 10.1016/s1005-0302(10)60040-0
Google Scholar
[10]
D. Raabe, Recovery and recrystallization: Phenomena, physics, models, simulation. In: D. E. Laughlin, K. Hono (Eds.), Physical Metallurgy, fifth ed., Elsevier, 2014, 2291-2397.
DOI: 10.1016/b978-0-444-53770-6.00023-x
Google Scholar
[11]
K. Adam, D. Zöllner, D. P. Field, 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys, Modelling Simul. Mater. Sci. Eng. 26 (2018) 035011.
DOI: 10.1088/1361-651x/aaa146
Google Scholar
[12]
F. Wang, D. G. Eskin, A. V. Khvan, K. F. Starodub, J. J. H. Lim, M. G. Burke, T. Connolley, J. Mi, On the occurrence of a eutectic-type structure in solidification of Al-Zr alloys, Scripta Materialia. 133 (2017) 75-78.
DOI: 10.1016/j.scriptamat.2017.02.027
Google Scholar
[13]
K. T. Kashyap, Effect of zirconium addition on the recrystallization behavior of a commercial Al-Cu-Mg alloy, Bull. Mater. Sci. 24(6) (2001) 643-648.
DOI: 10.1007/bf02704014
Google Scholar
[14]
S. Yan, Strengthening aluminum by zirconium and chromium, Degree of Master of Science, Worcester Polytechnic Institute, England, 2012.
Google Scholar
[15]
X. Qingchun, Z. Jing, P. Haicheng, H. Lina, L. Rongde, Effect of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu- 1.5Mg alloy, China Foundry. 8(1) (2011) 137-140.
Google Scholar
[16]
Z. Jia, G. Hu, B. Forbord, J. K. Solberg, Effect of homogenization and alloying elements on recrystallization resistance of Al–Zr–Mn alloys, Materials Science and Engineering: A. 444(1–2) (2007) 284-290.
DOI: 10.1016/j.msea.2006.08.097
Google Scholar
[17]
C. Shi, X. G. Chen, Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions, Materials Science and Engineering A. 650 (2016) 197-209.
DOI: 10.1016/j.msea.2015.09.105
Google Scholar
[18]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J. J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science. 60 (2014) 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[19]
H. Kooiker, E. S. Perdahcıoğlu, A. H.van den Boogaard, A Continuum model for the effect of dynamic recrystallization on the stress-strain response, Materials (Basel). 11(5) (2018) 867.
DOI: 10.3390/ma11050867
Google Scholar
[20]
V. Erukhimovitch, J. Baram, Modeling recrystallization kinetics, Materials Science and Engineering: A. 214(1–2) (1996), 78-83.
DOI: 10.1016/0921-5093(96)10223-9
Google Scholar
[21]
Q. Lei, Z. Li, Z. Y. Pan, M. P. Wang, Z. Xiao, C. Chen, Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging, Transactions of Nonferrous Metals Society of China. 20 (2010) 1006-1011.
DOI: 10.1016/s1003-6326(09)60249-1
Google Scholar
[22]
R. Cobden, A. Banbury, Training in aluminium application technologies lecture 1501 Aluminium: Physical properties, characteristics and alloys, European Aluminium Association TALAT-1501. (2009) 1-60.
Google Scholar
[23]
H. R. R. Ashtiani, P. Karami, Prediction of the microstructural variations of cold-worked pure aluminum during annealing process, Modeling and Numerical Simulation of Material Science. 5(1) (2015) 1-14.
DOI: 10.4236/mnsms.2015.51001
Google Scholar
[24]
Z. Djouadi, L. D'Hendecourt, H. Leroux, A. P. Jones, J. Borg, D. Deboffle, N. Chauvin, First determination of the (re)crystallization activation energy of an irradiated olivine-type silicate, Astronomy and Astrophysics, EDP Sciences. 440 (2005) 179-184.
DOI: 10.1051/0004-6361:20053263
Google Scholar