[1]
Ashassi-Sorkhabi, H., Aminikia, H., & Bagheri, R. (2014). Electroless deposition of Ni-Cu-P coatings containing nano-Al2O3 particles and study of its corrosion protective behaviour in 0.5 M H2SO4. International Journal of Corrosion, (2014)
DOI: 10.1155/2014/391502
Google Scholar
[2]
Ankita, S., & Singh, A. (2011). Corrosion and wear resistance study of Ni-P and Ni-P-PTFE nanocomposite coatings. Open Engineering, 1(3), 234-243.
DOI: 10.2478/s13531-011-0023-8
Google Scholar
[3]
Bahadormanesh, B., Ghorbani, M., & Lotfi, N. (2017). Applied surface science electrodeposition of nanocrystalline Zn/Ni multilayer coatings from single bath : Influences of deposition current densities and number of layers on characteristics of deposits. Applied Surface Science, 404, 101–109.
DOI: 10.1016/j.apsusc.2017.01.251
Google Scholar
[4]
El-sherik, B.A.M., & Erb, U. (2006). Adhesion & Corrosion Performance of Nanocrystalline Ni Coatings. 85–89.
Google Scholar
[5]
Fayomi, O.S.I., Abdulwahab, M., & Popoola, A.P.I. (2013). Properties Evaluation of Ternary Surfactant-Induced Zn-Ni- Al2O3 Films On Mild Steel By Electrolytic Chemical Deposition. Silicon, 9(5), 123–132.
Google Scholar
[6]
Jones, A.R., Hamann, J., Lund, A.C., & Schuh, C.A. (2010). Nanocrystalline Ni-W Alloy Coating for Engineering Applications. May.
Google Scholar
[7]
Muralidhara, H. B., & Naik, Y. A. (2008). Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath. 202, 3403–3412.
DOI: 10.1016/j.surfcoat.2007.12.012
Google Scholar
[8]
Ma, C., Wang, S.C., & Walsh, F.C. (2015). Electrodeposition of nanocrystalline nickel and cobalt coatings. 93(1)
DOI: 10.1179/0020296714Z.000000000202
Google Scholar
[9]
Nayana, K.O., Prashanth, S.A., Venkatesha, T. V, & Pandurangappa, M. (2019). Effect of additives on nanocrystalline bright Zn – Ni – Fe alloy electrodeposit Effect of additives on nanocrystalline bright Zn–Ni–Fe alloy electrodeposit properties. Surface Engineering, 0(0), 1–9.
DOI: 10.1080/02670844.2019.1588487
Google Scholar
[10]
Palumbo, G., Erb, U., Mccrea, J. L., Hibbard, G. D., Brooks, I., & Gonzalez, F. (2006). Electrodeposited nanocrystalline coatings for hard-facing applications, 679–687.
Google Scholar
[11]
Popoola, A.P.I. (2016). Fabrication and Properties of Zinc Composite Coatings for Mitigation of Corrosion in Coastal and Marine Zone World ' s largest Science. Technology & Medicine Open Access book publisher. September
DOI: 10.5772/62205
Google Scholar
[12]
Popoola, A. P. I., & Fayomi, O. S. I. (2011). Effect of some process variables on zinc coated low carbon steel substrates. Scientific research and essays, 6(20), 4264-4272.
DOI: 10.5897/sre11.777
Google Scholar
[13]
Roberge, P. R. (2008). Corrosion engineering. Principles & Practice. New York, NY, USA: McGraw-Hill. 708.
Google Scholar
[14]
Rusu, D.E., Ispas, A., Bund, A., Gheorghies, C., & Carac, G. (2012). Corrosion tests of nickel coatings prepared from a Watts-type bath. Journal of Coatings Technology and Research, 9(1), 87-95.
DOI: 10.1007/s11998-011-9343-0
Google Scholar
[15]
Sancakoglu, O., Culha, O., Toparli, M., Agaday, B., & Celik, E. (2011). Co-deposited Zn-submicron Sized Al2O3 Composite Coatings: Production, Characterisation and Micromechanical Properties, Journal of Material & Design, 32, 4054-4061.
DOI: 10.1016/j.matdes.2011.03.027
Google Scholar
[16]
Sattarahmady, N., Heli, H., & Faramarzi, F. (2010). Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin. Talanta, 82(4), 1126-1135.
DOI: 10.1016/j.talanta.2010.06.022
Google Scholar
[17]
Schultz, M.P., Bendick, J.A., Holm, E.R., & Hertel, W. M. (2010). Economic impact of biofouling on a naval surface ship. Biofouling, 27, 87–98.
DOI: 10.1080/08927014.2010.542809
Google Scholar
[18]
Tiwari, A., Seman, S., Singh, G., & Jayaganthan, R. (2019). Nanocrystalline cermet coatings for erosion–corrosion protection. Coatings, 9(6), 400.
DOI: 10.3390/coatings9060400
Google Scholar
[19]
Udoye, N.E., Fayomi, O.S.I., & Inegbenebor, A.O. (2022). The Essence of Intermetallic Phases in AA6061/Clay Composites. In Advanced Manufacturing in Biological, Petroleum, and Nanotechnology Processing: Application Tools for Design, Operation, Cost Management, and Environmental Remediation (pp.85-97).
DOI: 10.1007/978-3-030-95820-6_8
Google Scholar
[20]
Udoye, N. E., Ezike, G. E., Fayomi, O. S. I., & Dirisu, J. O. (2022). The Study on Mechanical and Electrical Properties of AA6061/Snail Shell Composites. International Journal of Chemical Engineering, 2022.
DOI: 10.1155/2022/9711761
Google Scholar
[21]
Wang, L., Gao, Y., Xu, T., & Xue, Q. (2006). A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Materials Chemistry and Physics, 99(1), 96-103.
DOI: 10.1016/j.matchemphys.2005.10.014
Google Scholar
[22]
Zimmerman, A.F., Palumbo, G., Aust, K. T., &Erb, U. (2002).Mechanical properties of nickel silicon carbide nanocomposites. Materials Science and Engineering: A, 328(1-2), 137-146.
DOI: 10.1016/s0921-5093(01)01692-6
Google Scholar