Characterization of a Solar Simulator Using Aluminum Plate as a Thermal Absorber

Article Preview

Abstract:

Solar energy contributes to the development of various industries involving the energy sector. One of the immediate uses of solar energy is in solar-driven desalination technologies, which gives an impact on the issue of water security and assuring safe water for hard-to-reach communities. However, there are limited studies about solar availability and unpredictability that results in the inefficient performance of solar desalination. The focus of this research is to determine the characteristics of the solar simulator using halogen lamps and aluminum plates as the thermal absorber. This study involves the fabrication and experimentation of a solar simulator using an aluminum metal sheet as a thermal absorber. Halogen lamps were used as artificial sunlight as their source of temperature and solar irradiation. Experimentations are carried out indoors, capable of repetitive performances within defined limits. The actual and simulated data collected such as temperature, solar irradiance, and voltage were compared in this study. Results showed that the simulated data from the simulator is within the acceptable range of values from International Electrotechnical Commission standards. Further improvements in the solar simulator setup involve the improvement of the data gathering tools and automation setup in terms of the design of various angles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-173

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bouadila, S., Kooli, S., Lazaar, M., Skouri, S., & Farhat, A. (2013). Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Applied Energy, 110, 267-275.

DOI: 10.1016/j.apenergy.2013.04.062

Google Scholar

[2] Tan, N. P. B., Ucab, P. M. L., Dadol, G. C., Jabile, L. M., Talili, I. N., & Cabaraban, M. T. I. (2022). A review of desalination technologies and its impact in the Philippines. Desalination, 534, 115805.

DOI: 10.1016/j.desal.2022.115805

Google Scholar

[3] Majid, Z. A. A., Ruslan, M. H., Sopian, K., Othman, M. Y., & Azmi, M. S. M. (2014). Study on performance of 80 watt floating photovoltaic panel. J. Mech. Eng. Sci, 7(1), 1150-1156.

DOI: 10.15282/jmes.7.2014.14.0112

Google Scholar

[4] Tian, Y., & Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied energy, 104, 538-553.

DOI: 10.1016/j.apenergy.2012.11.051

Google Scholar

[5] Al-Ahmad, A. Y., Clark, D., Holdsworth, J. L., Vaughan, B., Belcher, W. J., & Dastoor, P. C. (2022). An Economic LED Solar Simulator Design. IEEE Journal of Photovoltaics, 12(2), 521-525.

DOI: 10.1109/jphotov.2022.3143460

Google Scholar

[6] López-Fraguas, E., Sánchez-Pena, J. M., & Vergaz, R. (2019). A low-cost LED-based solar simulator. IEEE Transactions on Instrumentation and Measurement, 68(12), 4913-4923.

DOI: 10.1109/tim.2019.2899513

Google Scholar

[7] Mellit, A., & Benghanem, M. (Eds.). (2020). A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Springer.

Google Scholar

[8] Terliesner, S., Kaufmann, E., Grott, M., & Hagermann, A. (2022). A Simple Way of Simulating Insolation on a Rotating Body with a Commercial Solar Simulator. International J. Thermophysics, 43(7), 1-10.

DOI: 10.1007/s10765-022-03027-8

Google Scholar

[9] Sun, C., Jin, Z., Song, Y., Chen, Y., Xiong, D., Lan, K., ... & Zhang, M. (2022). LED-based solar simulator for terrestrial solar spectra and orientations. Solar Energy, 233, 96-110.

DOI: 10.1016/j.solener.2022.01.001

Google Scholar

[10] Ding, W., Zhou, Y., Gu, M., Gong, J., & Xu, J. (2022). Thermal Characteristic of Novel Insulation Materials Designed for Solar Simulator. Energies, 15(13), 4831.

DOI: 10.3390/en15134831

Google Scholar

[11] T anesab, J., Ali, M., Parera, G., Mauta, J., & Sinaga, R. (2019, October). A Modified Halogen Solar Simulator. In ICESC 2019: Proceedings of the 1st International Conference on Engineering, Science, and Commerce, ICESC 2019, 18-19 October 2019, Labuan Bajo, Nusa Tenggara Timur, Indonesia (p.9). European Alliance for Innovation.

DOI: 10.4108/eai.18-10-2019.2289851

Google Scholar

[12] Jung, I. S., Choi, J., Shah, D. K., & Akhtar, M. S. (2020). Development and Characterization of Solar Simulator for Solar Cells. Journal of Nanoelectronics and Optoelectronics, 15(6), 720-724.

DOI: 10.1166/jno.2020.2802

Google Scholar

[13] Dipasquale, D., Brunello, P., Zarella, A., Pertile, M., & Debei, S. (2019). Numerical characterization of a solar simulator. In 37th UIT Heat Transfer Conference.

Google Scholar

[14] Samir, A., Mahgoub, A., Eliwa, A., Atia, D. M., El-Madany, H. T., El-Metwally, K., & Zahran, M. (2020). Design and implementation of LED solar simulator. WSEAS Trans. Power Syst., 15, 68-78.

DOI: 10.37394/232016.2020.15.8

Google Scholar

[15] Yandri, E. (2018). Uniformity characteristic and calibration of simple low-cost compact halogen solar simulator for indoor experiments. International Journal of Low-Carbon Technologies, 13(3), 218-230.

DOI: 10.1093/ijlct/cty018

Google Scholar

[16] Tawfik, M., Tonnellier, X., & Sansom, C. (2018). Light source selection for a solar simulator for thermal applications: A review. Renewable and Sustainable Energy Reviews, 90, 802-813.

DOI: 10.1016/j.rser.2018.03.059

Google Scholar

[17] Lawin, A. E., Niyongendako, M., & Manirakiza, C. (2019). Solar irradiance and temperature variability and projected trends analysis in Burundi. Climate, 7(6), 83.

DOI: 10.3390/cli7060083

Google Scholar

[18] International Electrotechnical Commission. (2008). Photovoltaic devices—Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. IEC 60904–3 ed2.

DOI: 10.3403/00319123

Google Scholar

[19] Rosli, M. A. M., Hamizan, M. A. D., Nawam, M. Z., Fazli, M. F. A., Saleem, S. N. D. N., Noh, N. M., & Hussain, F. (2022). A Study of Spectral Match and Spatial Non-uniformity for Indoor Solar Simulator. In International Conference and Exhibition on Sustainable Energy and Advanced Materials (pp.230-235). Springer, Singapore.

DOI: 10.1007/978-981-19-3179-6_41

Google Scholar

[20] Cortés‐Severino, R., Cárdenas‐Bravo, C., Barraza, R., Sánchez‐Squella, A., Valdivia Lefort, P., & Castillo‐Burns, F. (2021). Optimal design and experimental test of a solar simulator for solar photovoltaic modules. Energy Science & Engineering, 9(12), 2514-2528.

DOI: 10.1002/ese3.985

Google Scholar

[21] Arifin, Z., Kuncoro, I. W., & Hijriawan, M. (2021). Solar simulator development for 50 WP solar photovoltaic experimental design using halogen lamp. International Journal of Heat and Technology, 39(6), 1741-1747.

DOI: 10.18280/ijht.390606

Google Scholar

[22] Bindu, S., Soofi, A., Askins, S., Vallerotto, G., Dominguez, C., & Antón, I. (2022, September). Solar simulator for indoor characterization of hybrid CPV/flat-plate modules. In AIP Conference Proceedings (Vol. 2550, No. 1, p.020001). AIP Publishing LLC.

DOI: 10.1063/5.0102699

Google Scholar

[23] Napat Watjanatepin, P. K. (2021). A Novel Solar Simulator Based on Combined Natural-White and Infrared Light Emitting Diodes. Journal of Southwest Jiaotong University, 56(5).

DOI: 10.35741/issn.0258-2724.56.5.53

Google Scholar

[24] Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021, March). Stability Test on Power Supply to the Xenon Lamp of Solar Simulator. In Journal of Physics: Conference Series (Vol. 1820, No. 1, p.012142). IOP Publishing.

DOI: 10.1088/1742-6596/1820/1/012142

Google Scholar

[25] Chu, S., Bai, F., Nie, F., & Wang, Z. (2021). Description and Characterization of a 114-kWe High-Flux Solar Simulator. Journal of Solar Energy Engineering, 143(1).

DOI: 10.1115/1.4047295

Google Scholar