Development of a CNC Grinding Process for the Manufacturing of Crystal Glass Products

Article Preview

Abstract:

Traditional manufacturing and finishing operations of crystal products use intensive specialized labour resulting in high cycle times and production costs. It is intended to investigate the applicability of automated finishing technology, namely grinding in a CNC machining centre, with consideration of material’s characteristics and geometric variability to crystal processing. A case study will be presented, involving cutting tools development, cutting parameters optimization, CAM programming of machining strategies and toolpaths, product clamping systems and finally product machining and quality control that is being implemented at Vista Alegre Atlantis company.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Liang, D. Zhang, W. Wu, and K. Zou, "Methods and research for multi-component cutting force sensing devices and approaches in machining" Sensors (Switzerland), vol. 16, no. 11. MDPI AG, p.1–17, Nov. 16, 2016.

DOI: 10.3390/s16111926

Google Scholar

[2] M. Yang, J. Yang, L. Zhu, X. Yu, A novel curvature circle iterative algorithm for contour error control of multi-axis CNC machine tools Precis. Eng., 65 (2020), pp.23-31

DOI: 10.1016/j.precisioneng.2020.05.005

Google Scholar

[3] B. Yang, G. Zhang, Y. Ran, H. Yu, Kinematic modeling and machining precision analysis of multi-axis CNC machine tools based on screw theory, Mech. Mach. Theory., 140 (2019), pp.538-552.

DOI: 10.1016/j.mechmachtheory.2019.06.021

Google Scholar

[4] D. Zhu, X. Feng, X. Xu, Z. Yang, W. Li, S. Yan, H. Ding, Robotic grinding of complex components: a step towards efficient and intelligent machining – challenges, solutions, and applications, Robot. Cim-Int. Manuf., 65 (2020)

DOI: 10.1016/j.rcim.2019.101908

Google Scholar

[5] R. P. Singh and S. Singhal, "Rotary Ultrasonic Machining: A Review" Mater. Manuf. Process., vol. 31, no. 14, p.1795–1824, 2016.

DOI: 10.1080/10426914.2016.1140188

Google Scholar

[6] T. A. R. Ferreira, "Automatic volume inspection for glass blow moulds" Master degree in Product Design Engineering. Instituto Politecnico de Leiria, 2020.

Google Scholar

[7] W. Höland and G. H. Beall, "Advanced Ceramics Machining," in Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties: Second Edition, Ioan D. Marinescu, Ed. 2013, p.371–381.

DOI: 10.1016/b978-0-12-385469-8.00021-6

Google Scholar

[8] B.Y. Chen, E.Z. Zhang, L.P. Yan, et al., A laser interferometer for measuring straightness and its position based on heterodyne interferometry Rev Sci Instrum, 80 (11) (2009), Article 115113

DOI: 10.1063/1.3266966

Google Scholar

[9] D.M. Lee, H.H. Lee, S.H. Yang, Analysis of squareness measurement using a laser interferometer system, Int J Precis Eng Man, 14 (2013), pp.1839-1846

DOI: 10.1007/s12541-013-0246-0

Google Scholar

[10] D. Maruyama, S. Ibaraki, R. Sakata, Measurement of machine tool two-dimensional error motions using direction-regulated laser interferometers, Int J Auto Tech, 2 (2022), p.16

DOI: 10.20965/ijat.2022.p0157

Google Scholar