An Approach for Grading of Soil Corrosiveness: A Case Study in Vicinity of Ring Road-Kathmandu

Article Preview

Abstract:

Corrosion of the outer surface of underlying Zn-coated or carbon steel pipes in the soil becomes complex and intricate due the insufficient information about the electrochemical interactions between discrete pairs of all corrosive soil factors. To overcome such corrosive problems of the underlying metal pipes in the soil, an ongoing study has suggested a stochastic approach for a close analysis of the corrosive grading of each soil specimen, sampled from the vicinity of Ring Road (RR) of Kathmandu, Nepal, towards the pipes with modifying the previously utilized AWWA (American Water Works Association), ASTM and NACE methods. Four corrosive grades (CGs) of all the soil specimens were categorized based on their quantitatively calculated soil factors in the stochastic approach of the novel probabilistic modeling (NPM) method. Then, they grouped supplementary ten corrosive sub-grades (CSGs) taking the sum of the cumulative point (CuP) of every soil factor. An indeterminate examination of 10 soil specimens was accomplished to categorize their CSGs, which would be a more precise method to draw a corrosive soil mapping of the study areas. The outcomes of such analysis under the NPM method imparted that about 90% of the sampled soil specimens of the RR areas allied only to five specific CSGs belonging to two CGs, i.e., G-RAR and G-MID.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-184

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] KUKL, Annual Report (14th Anniversary), Kathmandu Upatyaka Khanepani Limited, Kathmandu, Nepal, 2022.

Google Scholar

[2] R. Li, Y. Lai, C. Feng, R. Dev, Y. Wang, Y. Hao, Diarrhea in under five-year-old children in Nepal: A spatiotemporal analysis based on demographic and health survey data, Int. J. Environ. Res. Public Health 17(6) (2020) 2140

DOI: 10.3390/ijerph17062140

Google Scholar

[3] I. Bertuccio, M.V. Biezma Moraleda, Risk assessment of corrosion in oil and gas pipelines using fuzzy logic, Corros. Eng. Sci. Technol. 47(7) (2012) 553-558

DOI: 10.1179/1743278212Y.0000000028

Google Scholar

[4] K.P. Dahal, S.K. Regmi, J. Bhattarai, A novel approach for proximate analysis of soil corrosion condition in Imadol-Sanagaun and Kantipur Colony areas of Nepal, Solid State Phenom. 338 (2022) 17-27

DOI: 10.4028/p-u7uv9u

Google Scholar

[5] M. Baker Jr., R.R. Fessler, Pipeline Corrosion, in: Final Report, Integrity Management Program Under Delivery Order DTRS56-02-D-70036, Biztek Consulting, Inc., USA, 2008, p.78.

Google Scholar

[6] S. Khakzad, M. Yang, A. Lohi, N. Khakzad, Probabilistic failure assessment of oil pipelines due to internal corrosion, Process Saf. Prog. (2022) 1‐11

DOI: 10.1002/prs.12364

Google Scholar

[7] K. Zakikhani, F. Nasiri, T. Zayed, A failure prediction model for corrosion in gas transmission pipelines, in: Proc. Inst. Mech. Eng., Part O: J. Risk Reliab. 235(3) (2020) 374-390

DOI: 10.1177/1748006X20976802

Google Scholar

[8] K.P. Dahal, Investigation of Soil Corrosion to Buried-Metallic Materials of Kathmandu Valley, Nepal, Ph.D. Thesis submitted to Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal, 2022, p.135.

DOI: 10.52547/jad.2022.4.1.4

Google Scholar

[9] P.P. Bhandari, K.P. Dahal, J. Bhattarai, (2013). The corrosivity of soil collected from Araniko Highway and Sanothimi areas of Bhaktapur, J. Inst. Sci. Technol. 18(1) (2013) 71-77.

Google Scholar

[10] R. Singh, Pipeline Integrity Handbook: Risk Management and Evaluation, Elsevier Science, UK, 2017.

Google Scholar

[11] Z. May, M.K. Alam, N.A. Nayan, Recent advances in nondestructive method and assessment of corrosion undercoating in carbon–steel pipelines, Sensors 22(17) (2022) 6654

DOI: 10.3390/s22176654

Google Scholar

[12] K.P. Dahal, R.K. Karki, J. Bhattarai, Evaluation of corrosivity of soil collected from the central part of Kathmandu Metropolis (Nepal) to water supply metallic pipes, Asian J. Chem. 30(7) 2018) 1525-1530

DOI: 10.14233/ajchem.2018.21211

Google Scholar

[13] J. Bhattarai, Study on the corrosive nature of soil towards the buried structures, Scientific World, 11(11) (2013) 43-47

DOI: 10.3126/sw.v11i11.8551

Google Scholar

[14] ASTM G200-20, Standard Test Method for Measurement of Oxidation-Reduction Potential (ORP) of Soil, Vol. 03.03, ASTM International, West Conshohocken, USA, 2020, p.5

DOI: 10.1520/G0200-20

Google Scholar

[15] ASTM G187-18, Standard Test Method for Measurement of Soil Resistivity Using the Two-Electrode Soil Box Method, Vol. 03.02, ASTM International, West Conshohocken, USA, 2018, p.6

DOI: 10.1520/G0187-18

Google Scholar

[16] ASTM D4959-16, Standard Test Method for Determination of Water (Moisture) Content of Soil by Direct Heating, Vol. 04.08, ASTM International, West Conshohocken, USA, 2016, p.6

DOI: 10.1520/D4959-16

Google Scholar

[17] ANSI/NACE SP0502-2010, Pipeline External Corrosion Direct Assessment Methodology, American National Standards Institute & NACE International, Houston, Texas, USA, 2010, p.54.

Google Scholar

[18] AASHTO T 290-95, Standard Method of Test for Determining Water-soluble Sulfate Ion Content in Soil, American Association of State Highway and Transportation Officials. American Association of State and Highway Transportation Officials, Washington, DC, USA, 2020, p.10.

DOI: 10.4135/9781483346526.n55

Google Scholar

[19] AASHTO T 267-86, Standard Method of Test for Determination of Organic Content in Soils by Loss of Ignition, American Association of State and Highway Transportation Officials, Washington, DC, USA, 2018, p.4

DOI: 10.17226/22921

Google Scholar

[20] K.H. Logan, S.P. Ewing, I.A. Denison, Soil corrosion testing, in: F. Speller (Ed.), Sym. Corros. Test. Proc., ASTM International, West Conshohocken, USA, 1937, pp.95-128

DOI: 10.1520/STP47836S

Google Scholar

[21] S.K. Regmi, K.P. Dahal, J. Bhattarai, Soil corrosivity to the buried-pipes used in Lalitpur, Kathmandu Valley, Nepal, Nepal J. Envir. Sci. 3(1) (2015) 15-20

DOI: 10.3126/njes.v3i0.22730

Google Scholar

[22] Y.R. Dhakal, K.P. Dahal, J. Bhattarai, Investigation on the soil corrosivity towards the buried water supply pipelines in Kamerotar Town Planning areas of Bhaktapur, Nepal, Bibechana 10 (2014) 82-91

DOI: 10.3126/bibechana.v10i0.8454

Google Scholar

[23] M. Gautam, J. Bhattarai, Study on the soil corrosivity towards the buried structures in soil environment of Tanglaphant-Tribhuvan University Campus-Balkhu areas of Kirtipur, Nepal J. Sci. Technol. 14(2) (2013) 65-72

DOI: 10.3126/njst.v14i2.10417

Google Scholar

[24] A. Poudel, K.P. Dahal, D. KC, J. Bhattarai, A classification approach for corrosion rating of soil to buried water pipelines: a case study in Budhanilkantha-Maharajganj Roadway areas of Nepal, World J. Appl. Chem. 5(3) (2020) 47-56

DOI: 10.11648/j.wjac.20200503.12

Google Scholar

[25] ASTM D512-12, Standard Test Methods for Chloride Ion In Water (Silver Nitrate Titration), Vol. 11.01, ASTM International, West Conshohocken, USA, 2012, pp.15-21

DOI: 10.1520/D0512-12

Google Scholar

[26] NACE SP01569, Control of External Corrosion on Underground or Submerged Metallic Piping Systems, NACE International, Houston, Texas, USA, 2013, p.60.

Google Scholar

[27] M. Romanoff, Exterior corrosion of cast‐iron pipe, AWWA J., 56(9) (1964) 1129-1143

DOI: 10.1002/j.1551-8833.1964.tb01314.x

Google Scholar

[28] R.W. Bonds, L.M. Barnard, A.M. Horton, G.L. Oliver, Corrosion and corrosion control of iron pipe: 75 years of research, AWWA J. 97(6) (2005) 88-98

DOI: 10.1002/j.1551-8833.2005.tb10915.x

Google Scholar

[29] H. Najjaran, R. Sadiq, B. Rajani, Modeling pipe deterioration using soil properties- an application of Fuzzy Logic Expert system, Pipeline Eng. Constr. (2004) 1-10

DOI: 10.1061/40745(146)73

Google Scholar

[30] R. Sadiq, B. Rajani, Y. Kleiner, Fuzzy-based method to evaluate soil corrosivity for prediction of water main deterioration, J. Infrastr. Syst. 10(4) (2004) 149-156

DOI: 10.1061/(ASCE)1076-0342(2004)10:4(149)

Google Scholar

[31] J. Bhattarai, D. Paudyal, K.P. Dahal, Study on the soil corrosivity towards the buried-metallic pipes in Kathmandu and Chitwan Valley of Nepal, in: Proc. 17th Asian-Pacific Corros. Contr. Conf., Paper No. 17039, 27-30 January 2016, IIT Bombay, Mumbai, India, 2016, p.12. https://www.researchgate.net/publication/293178472

DOI: 10.3126/njes.v3i0.22730

Google Scholar

[32] M. Yazdi, F. Khan, R. Abbassi, Microbiologically influenced corrosion (MIC) management using Bayesian inference, Ocean Eng. 226 (2021) 108852

DOI: 10.1016/j.oceaneng.2021.108852

Google Scholar

[33] M.V. Biezma, D. Agudo, G.A. Barron, Fuzzy logic method: predicting pipeline external corrosion rate, Int. J. Pressure Vessels Piping 163 (2018) 55-62

DOI: 10.1016/j.ijpvp.2018.05.001

Google Scholar

[34] E. Saidi, B. Anvaripour, F. Jaderi, N. Nabhani, Fuzzy risk modeling of process operations in the oil and gas refineries, J. Loss Prev. Process Ind. 30(1) (2014) 63-73

DOI: 10.1016/j.jlp.2014.04.002

Google Scholar

[35] N. Idusuyi, O.J. Samuel, T.T. Olugasa, O.O. Ajide, R. Abu, Corrosion modelling using convolutional neural networks: a brief overview, J. Bio- Tribo- Corros. 8 (2022) 72

DOI: 10.1007/s40735-022-00671-3

Google Scholar

[36] B.T. Bastian, N. Jaspreeth, S.K. Ranjith, C.V. Jiji, Visual inspection and characterization of external corrosion in pipelines using deep neural network, NDT and E Int. 107 (2019) 102134

DOI: 10.1016/j.ndteint.2019.102134

Google Scholar

[37] J. Szymenderski, W. Machczynski, K. Budnik, Modeling effects of stochastic stray currents from DC traction on corrosion hazard of buried pipelines, Energies 12(23) (2019) 4570

DOI: 10.3390/en12234570

Google Scholar

[38] C. Taylor, C. (2015). Corrosion informatics: an integrated approach to modelling corrosion, Corros. Eng. Sci. Technol. 50(7) (2015) 490-508

DOI: 10.1179/1743278215Y.0000000012

Google Scholar

[39] J.C. Velazquez, E. Hernandez-Sanchez, G. Teran, S. Capula-Colindres, M. Diaz-Cruz, A. Cervantes-Tobón, Probabilistic and statistical techniques to study the impact of localized corrosion defects in oil and gas pipelines: a review, Metals 12(4) (2022) 576

DOI: 10.3390/met12040576

Google Scholar

[40] K.P. Dahal, J.N. Timilsena, M. Gautam, J. Bhattarai, Investigation on probabilistic model for corrosion failure level of buried pipelines in Kirtipur urban areas (Nepal), J. Failure Anal. Prev. 21(3) (2021) 914-926

DOI: 10.1007/s11668-021-01138-2

Google Scholar

[41] V. Aryai, H. Baji, M. Mahmoodian, C.Q. Li, Time-dependent finite element reliability assessment of cast-iron water pipes subjected to spatio-temporal correlated corrosion process, Reliab. Eng. Syst. Saf. 197 (2020) 106802

DOI: 10.1016/j.ress.2020.106802

Google Scholar

[42] S. Hassan, J. Wang, C. Kontovas, M. Bashir, An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using Bayesian networks, Reliab. Eng. Syst. Saf. 218 (2022) 108171

DOI: 10.1016/j.ress.2021.108171

Google Scholar

[43] AASHTO T291, Standard Method of Test for Determining Water-soluble Chloride Ion Content in Soil, Washington, American Association of State Highway and Transportation Officials, DC, USA, 2022, p.12. https://standards.globalspec.com/std/14554274/t-291

Google Scholar

[44] ASTM G51-18, Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing, Vol. 03.02, ASTM International, West Conshohocken, USA, 2018, p.4

DOI: 10.1520/G0051-18

Google Scholar

[45] B.F. Tano, C.Y. Brou, E.R. Dossou-Yovo, K. Saito, K. Futakuchi, M.C.S. Wopereis, O. Husson, Spatial and temporal variability of soil redox potential, pH and electrical conductivity across a toposequence in the Savanna of West Africa, Agronomy 10(11) (2020) 1787

DOI: 10.3390/agronomy10111787

Google Scholar

[46] S.K. Regmi, K.P. Dahal, J. Bhattarai, A proximate analysis of soil corrosivity to water pipelines in the Manohara Town Planning area of Kathmandu Valley using a probabilistic approach, IOP Conf. Ser.: Mater. Sci. Eng. 1248 (2022) 012041

DOI: 10.1088/1757-899X/1248/1/012041

Google Scholar

[47] K.P. Dahal, S.K. Regmi, J. Bhattarai, New approach for studying soil corrosivity degree to water supply pipelines of Lalitpur Sub-Metropolis (Nepal), in: Proc. CORCON 2021, Paper No. CMT13, 18-20 November 2021, NACE International Gateway of India Section (NIGIS/NACE), India, 2021, p.19. http://103.208.224.92:5014/Corcon%202021/html/Corrosion%20Monitoring%20and%20Testing/CMT13.pdf

Google Scholar

[48] J. Jun, K.A. Unocic, M.V. Petrova, S.A. Shipilov, T. Carvalhaes, G. Thakur, J. Piburn, B.A. Pint, Methodologies for Evaluation of Corrosion Protection for Ductile Iron Pipe, Oak Ridge National Laboratory, Oak Ridge, USA, 2019, p.73.

DOI: 10.2172/1528741

Google Scholar

[49] NACE RP0502-2002, Pipeline External Corrosion Direct Assessment Methodology, NACE International, Houston, Texas, USA, 2002, p.62.

DOI: 10.1108/acmm.2003.12850cab.009

Google Scholar

[50] W. Wang, D. Robert, A. Zhou, C.-Q. Li, Factors affecting corrosion of buried cast iron pipes, J. Mater. Civ. Eng. 30(11) (2018) 04018272

DOI: 10.1061/(ASCE)MT.1943-5533.0002461

Google Scholar

[51] P. Iqbal, D. Muslim, Z. Zakaria, H. Permana, Y. Yunarto, Relationship between soil engineering properties and corrosion rate in Andesitic volcanic soils, West Lampung, Sumatra, Indonesia, Jurnal Teknologi (Sci. Eng.) 83(1) (2021) 117-25

DOI: 10.11113/jurnalteknologi.v83.14924

Google Scholar

[52] S. Suganya, R. Jeyalakshmi, Long-term study of the corrosion behavior of buried mild steel under different native soil environments, Mater. Today: Proc. 47(4) (2021) 957-963

DOI: 10.1016/j.matpr.2021.05.152

Google Scholar

[53] S.R. Othman, N. Yahaya, N.M. Noor, L.K. Sing, L. Zardasti, A.S.A. Rashid, Modeling of external metal loss for a corroded buried pipeline, J. Pressure Vessel Technol. 139(3) (2017) 031702

DOI: 10.1115/1.4035463

Google Scholar