Data Evaluation of the Protection Performance of Maize Husk Particulate Reinforcements on 1170 Aluminium Alloy Corrosion in Dilute Electrolytes

Article Preview

Abstract:

Maize husk (MH) particulates at wt.% composition of 5% and 10%, and particle sizes of 150 and 300 um were added to the microstructure of 1170 aluminium alloy (Al) and analysed for their effect on the corrosion resistance of the maize husk reinforced aluminium composites Al/MH in 3.5% NaCl, 0.00625 M H2SO4 and 3.5% NaCl/0.00625 M H2SO4 solution by weight loss method. Protection performance results obtained at 264 h of exposure shows the MH particulates significantly enhanced the corrosion resistance of the Al/MH at 5 wt.% comp./150 um particle size (45%) and 5% wt./300 um particle size (30%) in 3.5% NaCl solution at 264 h. In 0.00625% H2SO4 solution, MH particulates significantly weakened the corrosion resistance of the Al/MH composites at all MH wt.% comp./particle sizes. Protection performance data at 264 h varied from-58.77% to 8.77 % which are significantly below the threshold 20% protection performance values. However, in 3.5% NaCl/0.00625% H2SO4, protection performance data above 20% threshold was obtained for Al/MH composites at 10% wt. comp./300 um particle size, 5% wt. comp./150 um particle size and 10% wt. comp./300 um particle sizes (22.58%, 38.71% and 29.03%). Results from ANOVA statistical method shows MH particulate wt.% comp./particle size is the important determinant factors influencing the protection performance results of Al/MH composites compared to exposure time with statistical relevance factor values of 36.53%, 77.98% and 18% from the electrolytes. The proportion of data above 20% protection performance for CB and CS particulates in 3.5% NaCl solution is 0% at margins of error of 0%. The corresponding values in 0.05 M H2SO4 solution are 15.18% and 15.32% at margins of error of 40% and 43% while the values from 3.5% NaCl/0.05 M H2SO4 solution are 14.78% and 15.5% at margins of error of 35% and 50%. The proportion of data above 20% protection performance for Al/MH composite in 3.5% NaCl solution is 30% at margins of error of 14.2%. The corresponding values in 0.00625 M H2SO4 solution are 15% at margins of error of 15.42% while the values from 3.5% NaCl/0.00625 M H2SO4 solution are 63% at margins of error of 15%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-109

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Vinod, S. Ramanathan, V. Ananthi, and N. Selvakumar, 'Fabrication and Characterization of Organic and In-Organic Reinforced A356 Aluminium Matrix Hybrid Composite by Improved Double-Stir Casting', Silicon, vol. 11, no. 2, p.817–829, 2019.

DOI: 10.1007/s12633-018-9881-5

Google Scholar

[2] R.T. Loto, 'Corrosion inhibition effect of non-toxic α-amino acid compound on high carbon steel in low molar concentration of hydrochloric acid', J. Mater. Res. Techn., vol. 8, no. 1, pp.484-493, 2019.

DOI: 10.1016/j.jmrt.2017.09.005

Google Scholar

[3] R.T. Loto, ' Electrochemical analysis of the corrosion inhibition properties of 4-hydroxy-3-methoxybenzaldehyde on low carbon steel in dilute acid media', Cogent Eng., vol. 3, no. 1, p.1242107, 2016.

DOI: 10.1080/23311916.2016.1242107

Google Scholar

[4] R.T. Loto, 'Anti-corrosion performance of the synergistic properties of benzenecarbonitrile and 5-bromovanillin on 1018 carbon steel in HCl environment', Sci. Rep., vol. 7, no. 1, p.17555, 2017.

DOI: 10.1038/s41598-017-17867-0

Google Scholar

[5] K.V. Akpanyung, R.T. Loto and M.A. Fajobi, 'An Overview of Ammonium Chloride (NH4Cl) Corrosion in the Refining Unit', J. Phys. Conf. Ser., vol. 1378, no. 2, p.022089, 2019.

DOI: 10.1088/1742-6596/1378/2/022089

Google Scholar

[6] W. Liu, R. Yin, X. Xu, L. Zhang, W. Shi, and X. Cao, 'Structural engineering of low‐dimensional metal–organic frameworks: synthesis, properties, and applications', Adv. Sci., vol. 6, no. 12, p.1802373, 2019.

DOI: 10.1002/advs.201802373

Google Scholar

[7] A. K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskienė, and C. Pinca-Bretotean, 'A study of advancement in application opportunities of aluminum metal matrix composites', Mater. Today Proc., vol. 26, p.2419–2424, 2020.

DOI: 10.1016/j.matpr.2020.02.516

Google Scholar

[8] S. Mohd Yusuf, S. Cutler, and N. Gao, 'The impact of metal additive manufacturing on the aerospace industry', Metals, vol. 9, no. 12, p.1286, 2019.

DOI: 10.3390/met9121286

Google Scholar

[9] V. Moreau, P. C. Dos Reis, and F. Vuille, 'Enough metals? Resource constraints to supply a fully renewable energy system', Resources, vol. 8, no. 1, p.29, 2019.

DOI: 10.3390/resources8010029

Google Scholar

[10] D. Brough and H. Jouhara, 'The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery', Int. J. Thermofluids, vol. 1, p.100007, 2020.

DOI: 10.1016/j.ijft.2019.100007

Google Scholar

[11] Y. IŞIK, B. Tekin, A. Yılmaz, F. Tatoğlu, and D. Öztürk, 'Weight Optimization of Aluminum Alloys Used in Vehicles', Int. J. Mech. Eng., vol. 7, no. 11, 2020.

DOI: 10.14445/23488360/ijme-v7i11p102

Google Scholar

[12] M. Paz Martínez-Viademonte, S. T. Abrahami, T. Hack, M. Burchardt, and H. Terryn, 'A review on anodizing of aerospace aluminum alloys for corrosion protection', Coatings, vol. 10, no. 11, p.1106, 2020.

DOI: 10.3390/coatings10111106

Google Scholar

[13] V. Chak, H. Chattopadhyay, and T. Dora, 'A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites', J. Manuf. Process., vol. 56, p.1059–1074, 2020.

DOI: 10.1016/j.jmapro.2020.05.042

Google Scholar

[14] P. Garg, A. Jamwal, D. Kumar, K. K. Sadasivuni, C. M. Hussain, and P. Gupta, 'Advance research progresses in aluminium matrix composites: manufacturing & applications', J. Mater. Res. Technol., vol. 8, no. 5, p.4924–4939, Sep. 2019.

DOI: 10.1016/j.jmrt.2019.06.028

Google Scholar

[15] O. O. Joseph and M. O. Aluko, 'Effect of Synthetic Materials in Reinforcement of Aluminium Matrix Composites', vol. 1076, p.3–11, 2022.

DOI: 10.4028/p-o2816k

Google Scholar

[16] D. A. Ashebir, G. A. Mengesha, and D. K. Sinha, 'The Role of Tetra Hybrid Reinforcements on the Behavior of Aluminum Metal Matrix Composites.', J. Nanomater., 2022.

DOI: 10.1155/2022/1988293

Google Scholar

[17] D. A. Ashebir, G. A. Mengesha, and D. K. Sinha, 'An insight into mechanical and metallurgical behavior of hybrid reinforced aluminum metal matrix composite', Adv. Mater. Sci. Eng., vol. 2022, 2022.

DOI: 10.1155/2022/7843981

Google Scholar

[18] M. S. Kumar, M. Vasumathi, S. R. Begum, S. M. Luminita, S. Vlase, and C. I. Pruncu, 'Influence of B4C and industrial waste fly ash reinforcement particles on the micro structural characteristics and mechanical behavior of aluminium (Al–Mg–Si-T6) hybrid metal matrix composite', J. Mater. Res. Technol., vol. 15, p.1201–1216, 2021.

DOI: 10.1016/j.jmrt.2021.08.149

Google Scholar

[19] I. Aliyu, S. M. Sapuan, E. S. Zainudin, M. Z. M. Yusoff, R. Yahaya, and C. N. A. Jaafar, 'An overview of mechanical and corrosion properties of aluminium matrix composites reinforced with plant based natural fibres', Phys. Sci. Rev., 2022.

DOI: 10.1515/psr-2022-0044

Google Scholar

[20] M. Singh and A. Biswas, 'An overview of recent developments in Al metal matrix nanocomposites for strength-ductility synergy', Mater. Today Proc., 2022.

DOI: 10.1016/j.matpr.2022.11.095

Google Scholar

[21] K. Ponappa and Y. Panchal, 'Metals and alloys for lightweight automotive structures', in Materials for Lightweight Constructions, CRC Press, p.17–38, 2023.

DOI: 10.1201/9781003252108-2

Google Scholar

[22] H. Alshahrani and V. A. Prakash, 'Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application', Prog. Org. Coat., vol. 172, p.107080, 2022.

DOI: 10.1016/j.porgcoat.2022.107080

Google Scholar

[23] A. Gnanavelbabu, K. S. Surendran, P. Loganathan, and E. Vinothkumar, 'Effect of ageing temperature on the corrosion behaviour of UHTC particulates reinforced magnesium composites fabricated through ultrasonic assisted squeeze casting process', J. Alloys Compd., vol. 856, p.158173, 2021.

DOI: 10.1016/j.jallcom.2020.158173

Google Scholar

[24] B. Parveez, M. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. Umarfarooq, 'Scientific Advancements in Composite Materials for Aircraft Applications: A Review', Polymers, vol. 14, no. 22, p.5007, 2022.

DOI: 10.3390/polym14225007

Google Scholar