[1]
Atabay, S.E., et al., In Envelope Additive/Subtractive Manufacturing and Thermal Post-Processing of Inconel 718. Materials, 2022. 16(1): p.1.
DOI: 10.3390/ma16010001
Google Scholar
[2]
Sarafan, S., et al., Benchmarking of 316L Stainless Steel Manufactured by a Hybrid Additive/Subtractive Technology. Journal of Manufacturing and Materials Processing, 2022. 6(2): p.30.
DOI: 10.3390/jmmp6020030
Google Scholar
[3]
Sarafan, S., et al., Evaluation of maraging steel produced using hybrid additive/subtractive manufacturing. Journal of Manufacturing and Materials Processing, 2021. 5(4): p.107.
DOI: 10.3390/jmmp5040107
Google Scholar
[4]
Yablokova, G., et al., Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technology, 2015. 283: pp.199-209.
DOI: 10.1016/j.powtec.2015.05.015
Google Scholar
[5]
Spierings, A.B., et al., Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Progress in Additive Manufacturing, 2016. 1: pp.9-20.
DOI: 10.1007/s40964-015-0001-4
Google Scholar
[6]
Simson, T., et al., Mechanical Properties of 18Ni-300 maraging steel manufactured by LPBF. Procedia Structural Integrity, 2019. 17: pp.843-849.
DOI: 10.1016/j.prostr.2019.08.112
Google Scholar
[7]
Triantaphyllou, A., et al., Surface texture measurement for additive manufacturing. Surface topography: metrology and properties, 2015. 3(2): p.024002.
DOI: 10.1088/2051-672x/3/2/024002
Google Scholar
[8]
Sames, W.J., F. A. List, S. Pannala, R. R. Dehoff and S. S. Babu, The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 2016. 61(5): pp.315-360.
DOI: 10.1080/09506608.2015.1116649
Google Scholar
[9]
Tan, C., et al. Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting. in 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016). 2017. Atlantis Press.
DOI: 10.2991/icadme-16.2016.66
Google Scholar
[10]
Jiménez, A., P. Bidare, H. Hassanin, F. Tarlochan, S. Dimov and K. Essa, Powder-based laser hybrid additive manufacturing of metals. The International Journal of Advanced Manufacturing Technology, 2021. 114: pp.63-96.
DOI: 10.1007/s00170-021-06855-4
Google Scholar
[11]
Wüst, P., A. Edelmann, and R. Hellmann, Areal surface roughness optimization of maraging steel parts produced by hybrid additive manufacturing. Materials, 2020. 13(2): p.418.
DOI: 10.3390/ma13020418
Google Scholar
[12]
Afazov, S., L. Ceesay, O. Larkin, L. Berglind, W. Denmark, and E. Ozturk, A methodology for precision manufacture of a nozzle using hybrid laser powder-bed fusion: A case study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021. 235(4): pp.751-760.
DOI: 10.1177/0954405420958856
Google Scholar
[13]
Balbaa, M., et al., On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Materials & Design, 2020. 193: p.108818.
DOI: 10.1016/j.matdes.2020.108818
Google Scholar
[14]
MatWeb. Available from: https://www.matweb.com/. Accessed April 2023.
Google Scholar