Buckling Mechanism Simulation for Thin-Wall Components Made by Laser Powder Bed Fusion

Article Preview

Abstract:

The effect of part geometry on premature thin wall part failure in laser powder bed fusion (LPBF) is investigated using FEM simulation. Two FEM models are used to simulate the residual stress and buckling modes. Two experimental parts with different lengths are used for model validations. A LPBF FEM model evaluates the residual stress associated with the two experimental parts. A parametric buckling model is developed to determine the eigenvalues for 100 different part geometries including different part lengths (20-60 mm), widths (0.5-2 mm), and heights (10-50 mm). The results show that thin wall parts are more susceptible to buckling mode 1 when part length is small and to a combination of mode 1 and 3 when part length increases. In both cases the threshold stress for buckling is mostly sensitive to part thickness and height.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Chakraborty, R. Tangestani, W. Muhammad, T. Sabiston, J.-P. Masse, R. Batmaz, A. Wessman, É. Martin, Micro-cracking mechanism of RENÉ 108 thin-wall components built by laser powder bed fusion additive manufacturing, Mater Today Commun. 30 (2022) 103139. https://doi.org/.

DOI: 10.1016/j.mtcomm.2022.103139

Google Scholar

[2] Z. Li, R. Xu, Z. Zhang, I. Kucukkoc, The influence of scan length on fabricating thin-walled components in selective laser melting, Int J Mach Tools Manuf. 126 (2018) 1–12.

DOI: 10.1016/j.ijmachtools.2017.11.012

Google Scholar

[3] X. Quelennec, E. Martin, L. Jiang, J.J. Jonas, Work hardening and kinetics of dynamic recrystallization in hot deformed austenite, in: J Phys Conf Ser, IOP Publishing, 2010: p.12082.

DOI: 10.1088/1742-6596/240/1/012082

Google Scholar

[4] A. Chakraborty, R. Tangestani, T. Sabiston, N. Krutz, L. Yuan, É. Martin, Effect of Build Height on Micro-cracking of Additively Manufactured Superalloy RENÉ 108 Thin-Wall Components BT  - TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings, in: Springer International Publishing, Cham, 2022: p.985–993.

DOI: 10.1007/978-3-030-92381-5_94

Google Scholar

[5] S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I.A. Ashcroft, A. Clare, Fractal scan strategies for selective laser melting of 'unweldable'nickel superalloys, Addit Manuf. 15 (2017) 113–122.

DOI: 10.1016/j.addma.2017.02.002

Google Scholar

[6] Y. Li, A. Olmedilla, M. Založnik, J. Zollinger, L. Dembinski, A. Mathieu, Solidification microstructure during selective laser melting of Ni based superalloy: experiment and mesoscopic modelling, in: IOP Conf Ser Mater Sci Eng, IOP Publishing, 2019: p.12004.

DOI: 10.1088/1757-899x/529/1/012004

Google Scholar

[7] M. Gouge, E. Denlinger, J. Irwin, C. Li, P. Michaleris, Experimental Validation of Thermo-mechanical Part-Scale Modeling for Laser Powder Bed Fusion Processes, Addit Manuf. (2019).

DOI: 10.1016/j.addma.2019.06.022

Google Scholar

[8] A. Chakraborty, R. Tangestani, R. Batmaz, W. Muhammad, P. Plamondon, A. Wessman, L. Yuan, É. Martin, In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing, J Mater Sci Technol. (2021).

DOI: 10.1016/j.jmst.2021.05.017

Google Scholar

[9] C. Li, M.F. Gouge, E.R. Denlinger, J.E. Irwin, P. Michaleris, Estimation of part-to-powder heat losses as surface convection in laser powder bed fusion, Addit Manuf. 26 (2019) 258–269.

DOI: 10.1016/j.addma.2019.02.006

Google Scholar

[10] É. Martin, W. Muhammad, A.J. Detor, I. Spinelli, A. Wessman, D. Wei, "Strain-annealed" grain boundary engineering process investigated in Hastelloy-X, Materialia (Oxf). 9 (2020) 100544.

DOI: 10.1016/j.mtla.2019.100544

Google Scholar

[11] A. Thatte, A. Loghin, E. Martin, V. Dheeradhada, Y. Shin, B. Ananthasayanam, Multi-Scale Coupled Physics Models and Experiments for Performance and Life Prediction of Supercritical CO2 Turbomachinery Components, in: The 5th International Symposium-Supercritical, 2016.

DOI: 10.1115/gt2016-57695

Google Scholar

[12] E. Martin, A. Natarajan, S. Kottilingam, R. Batmaz, Binder jetting of "Hard-to-Weld" high gamma prime nickel-based superalloy RENÉ 108, Addit Manuf. 39 (2021) 101894.

DOI: 10.1016/j.addma.2021.101894

Google Scholar

[13] A. Chakraborty, R. Tangestani, K. Esmati, T. Sabiston, L. Yuan, É. Martin, Mitigating Inherent Micro-Cracking in Laser Additively Manufactured René 108 Thin-Wall Components, Available at SSRN 4150319. (n.d.).

DOI: 10.2139/ssrn.4150319

Google Scholar

[14] Y. Wang, S. Roy, H. Choi, T. Rimon, Cracking suppression in additive manufacturing of hard-to-weld nickel-based superalloy through layer-wise ultrasonic impact peening, J Manuf Process. 80 (2022) 320–327. https://doi.org/.

DOI: 10.1016/j.jmapro.2022.05.041

Google Scholar

[15] J.H. Robinson, I.R.T. Ashton, E. Jones, P. Fox, C. Sutcliffe, The effect of hatch angle rotation on parts manufactured using selective laser melting, Rapid Prototyp J. 25 (2019) 289–298.

DOI: 10.1108/rpj-06-2017-0111

Google Scholar

[16] R. Tangestani, T. Sabiston, A. Chakraborty, L. Yuan, N. Krutz, É. Martin, An efficient track-scale model for laser powder bed fusion additive manufacturing: Part 2- mechanical model, Front Mater. (2021).

DOI: 10.3389/fmats.2021.759669

Google Scholar

[17] R. Tangestani, Multi-Scale Modeling of Laser Powder Bed Fusion Process for Superalloys, 2022.

Google Scholar

[18] M. Mostafaei, S.M. Abbasi, Solutioning and solidification process control in Ta-modified CM247 LC superalloy, J Mater Process Technol. 231 (2016) 113–124.

DOI: 10.1016/j.jmatprotec.2015.12.021

Google Scholar

[19] R. Przeliorz, F. Binczyk, P. Gradoń, M. Góral, T. Mikuszewski, Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys, Archives of Foundry Engineering. 14 (2014).

DOI: 10.2478/afe-2014-0064

Google Scholar

[20] A.J. Torroba, O. Koeser, L. Calba, L. Maestro, E. Carreño-Morelli, M. Rahimian, S. Milenkovic, I. Sabirov, J. LLorca, Investment casting of nozzle guide vanes from nickel-based superalloys: part I–thermal calibration and porosity prediction, Integr Mater Manuf Innov. 3 (2014) 344–368.

DOI: 10.1186/s40192-014-0025-5

Google Scholar

[21] R. Tangestani, T. Sabiston, A. Chakraborty, W. Muhammad, L. Yuan, É. Martin, An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 1- Thermal Model, Front Mater. 8 (2021).

DOI: 10.3389/fmats.2021.753040

Google Scholar

[22] R. Tangestani, T. Sabiston, A. Chakraborty, L. Yuan, N. Krutz, É. Martin, An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 2—Mechanical Model, Front Mater. 8 (2021).

DOI: 10.3389/fmats.2021.759669

Google Scholar

[23] P. Rozylo, A. Teter, H. Debski, P. Wysmulski, K. Falkowicz, Experimental and numerical study of the buckling of composite profiles with open cross section under axial compression, Applied Composite Materials. 24 (2017) 1251–1264.

DOI: 10.1007/s10443-017-9583-y

Google Scholar

[24] Abaqus HTML Documentation, in: Abaqus HTML Documentation, 2014.

Google Scholar