Ion Trajectory Control in Processing Plasmas for Nano-Fabrication

Article Preview

Abstract:

To realize ion trajectory control in processing plasmas for nano-fabrication, we applied amplitude modulation (AM) discharges to control of ion trajectory in high aspect trenches. We investigated behavior of incident ions in AR25 (aspect ratio = 25) trench structure in AM discharges using data of Ar+ ion with ion energy and ion angular distribution functions (IEDF and IADF) on the substrate obtained by the PIC-MCC model. AM discharges have higher ion flux onto the trench sidewalls than the continuous waveform (CW) discharges, whereas AM discharges have almost the same ion energy as CW ones. SRIM simulation results suggest that AM discharges can desorb more hydrogen atoms from TEOS-PECVD SiO2 films on the trench sidewall than CW ones, which explains the previous results of improved SiO2 film quality on trench sidewall by AM discharges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. W. Shen and K-N. Chen, Nanoscale Research Letters, 12, 1 (2017).

Google Scholar

[2] W. Zhang, C. Song, K. Xue, S. Yang, Z. Yong, H. Li, H. Xue, X. Jing, U. Lee, Microelectronic Engineering, 156, 50 (2016).

DOI: 10.1016/j.mee.2015.11.014

Google Scholar

[3] M.Su, D. Yu, Y. Liu, L. Wan, C. Song, F. Dai, K. Xue, X. Jing, D. Guidotti, Thin Solid Films, 550, 259 (2014).

DOI: 10.1016/j.tsf.2013.11.002

Google Scholar

[4] S. Ramaswami, J. Dukovic, B. Eaton, S. Pamarthy, A. Bhatnagar, Z. Cao, K. Sapre, Y. Wang, and A. Kumar, IEEE Trans. Device Mater. Reliab. 9, 4, 524 (2009).

DOI: 10.1109/tdmr.2009.2034317

Google Scholar

[5] M. Koyanagi, T. Fukushima, T. Tanaka, Proc. IEEE. 97, 49 (2009)

Google Scholar

[6] M. Koyanagi, T. Nakamura, Y. Yamada, H. Kikuchi, T. Fukushima, T. Tanaka, H. Kurino, IEEE Trans. Electron Devices. 53, 2799 (2006).

DOI: 10.1109/ted.2006.884079

Google Scholar

[7] A. Rahman and R. Reif, IEEE Trans. VLSI Syst. 8, 671 (2000).

Google Scholar

[8] T. Nam, H. Lee, T. Choi, S. Seo, C. M. Yoon, Y. Choi, H. Jeong, K. H. Lingam, R. V. Chitturi, A. Korolev, H. J. Ahn, H. Kim, Applied Surface Science, 485, 381 (2019).

DOI: 10.1016/j.apsusc.2019.03.227

Google Scholar

[9] L. Wang, Y. Jiang, C. Jiang, H. Liu, Y. Ji, F. Zhang, R. Fan, D. Chen, Journal of Non-Crystalline Solids, 482, 203 (2018).

Google Scholar

[10] H. Liu, L. Wang, Y. Jiang, S. Li, D. Liu, Y. Ji, F. Zhang, D. Chen, Vacuum, 148, 258 (2018).

Google Scholar

[11] W. J. Lee and Y. H. Choa, Thin Solid Films, 657, 32-37(2018).

Google Scholar

[12] T.S. Cale, M. O. Bloomfield and M. K. Gobbert, 201, 22-23, 8873 (2007).

Google Scholar

[13] K. Kamataki, D. Nagamathu, T. Yang, K. Abe, A. Yamamoto, I. Nagao, T. Arima, M. Otaka, Y. Yamamoto, D. Yamashita, T. Okumura, N. Yamashita, N. Itagaki, K. Koga, and M. Shiratani, AIP Advances, 12, 8, 085220 (2022).

DOI: 10.1063/5.0097691

Google Scholar

[14] K.Kamataki, K. Abe, A. Yamamoto, I. Nagao, M. Otaka, D. Yamashita, N. Itagaki, T. Okumura, K. Koga, M. Shiratani, S. Tahara, Y. Mizokami, Y. Miyata, K. Tabuchi, T. Tanikuni, S. Hiyama, K. Nagahata, Proc. of 42nd International Symposium on Dry Process (DPS) G1 (2021).

Google Scholar

[15] K. Kamataki, Y. Morita, M. Shiratani, K. Koga, G. Uchida, and N. Itagaki, Journal of Instrumentation, 7, 04 C04017 (2012).

DOI: 10.1088/1748-0221/7/04/c04017

Google Scholar

[16] K. Kamataki, Miyata H, K. Koga, G. Uchida, N. Itagaki and M. Shiratani, Applied physics express, 4, 10 105001(2011).

DOI: 10.1143/apex.4.105001

Google Scholar

[17] K. Kamataki, K. Koga, G. Uchida, N. Itagaki, D. Yamashita, H. Matsuzaki and M. Shiratani, Thin Solid Films, 523, 76 (2012).

DOI: 10.1016/j.tsf.2012.07.059

Google Scholar

[18] M. Shiratani, K. Koga, S. Iwashita, G. Uchida, N. Itagaki and K. Kamataki, Journal of Physics D: Applied Physics, 44, 17, 174038 (2011).

DOI: 10.1088/0022-3727/44/17/174038

Google Scholar

[19] R. Zhou, K. Kamataki, H. Ohtomo, D. Yamashita, N. Itagaki, K. Koga, M. Shiratani, Plasma and Fusion Research, 14, 4406120 (2019).

DOI: 10.1585/pfr.14.4406120

Google Scholar

[20] K. Abe, K. Kamataki, A. Yamamoto, I. Nagao, M. Otaka, D. Yamashita, T. Okumura, N. Yamashita, N. Itagaki, K. Koga, M. Shiratani, Jpn. J. Appl. Phys., 60, 106003 (2022).

DOI: 10.35848/1347-4065/ac7626

Google Scholar

[21] I. Nagao, K. Kamataki1, A. Yamamoto, M. Otaka, Y. Yamamoto, D. Yamashita, N. Yamashita, T. Okumura, N. Itagaki, K. Koga, M. Shiratani, MRS Advances, 7, 911(2022).

DOI: 10.1557/s43580-022-00417-w

Google Scholar

[22] PEGASUS Software Inc. http://www.psinc.co.jp/

Google Scholar

[23] W. Zang et al., Silicon interposer process development for advanced system integration, Microelectronic Engineering 156, 50 (2016).

Google Scholar

[24] J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM The stopping and ranges of ions in matter SRIM Co, 2008, http://www.srim.org/.

Google Scholar

[25] N. Kuboi, T. Tatsumi, S. Kobayashi, J. Komachi, M. Fukasawa, T. Kinoshita, H. Ansai, Jpn. J. Appl. Phys., 50, 11R (2011) 116501.

DOI: 10.1143/jjap.50.116501

Google Scholar

[26] L.C.D. Gonçalves, C. E. Viana, J. C. Santos, N. I. Morimoto, Surface and Coatings Technology 180, 275-279 (2014).

Google Scholar

[27] M. J. Loboda, Microelectronic Engineering, 50, 1-4, 15 (2000).

Google Scholar

[28] S. Ponton, F. Dhainaut, H. Vergnes, D. Samelor, D. Sadowski, V. Rouessac, H. Lecoq, T. Sauvage, B. Caussat, C. Vahlas, Journal of Non-Crystalline Solids, 515, 34-41(2019).

DOI: 10.1016/j.jnoncrysol.2019.04.005

Google Scholar