[1]
Marrow J 2019 Understanding the Jominy End-Quench Test Classic steel hardenability testing
Google Scholar
[2]
Newkirk J W and MacKenzie D S 2000 The Jominy end quench for light-weight alloy development J Mater Eng Perform 9 408–15
DOI: 10.1361/105994900770345809
Google Scholar
[3]
Jominy W E 1939 Hardenability of Alloy Steels ASM 66
Google Scholar
[4]
Martin H, Amoako-Yirenkyi P, Pohjonen A, Frempong N K, Komi J and Somani M 2021 Statistical Modeling for Prediction of CCT Diagrams of Steels Involving Interaction of Alloying Elements Metallurgical and Materials Transactions B 52 223–35
DOI: 10.1007/s11663-020-01991-w
Google Scholar
[5]
Kirkaldy J S and Venugopalan D 1984 PREDICTION OF MICROSTRUCTURE AND HARDENABILITY IN LOW ALLOY STEELS.
Google Scholar
[6]
Miettinen J, Koskenniska S, Somani M, Louhenkilpi S, Pohjonen A, Larkiola J and Kömi J 2021 Optimization of the CCT Curves for Steels Containing Al, Cu and B Metallurgical and Materials Transactions B 52 1640–63
DOI: 10.1007/s11663-021-02130-9
Google Scholar
[7]
Miettinen J, Koskenniska S, Somani M, Louhenkilpi S, Pohjonen A, Larkiola J and Kömi J 2019 Optimization of CCT Equations Using Calculated Grain Boundary Soluble Compositions for the Simulation of Austenite Decomposition of Steels Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 50
DOI: 10.1007/s11663-019-01698-7
Google Scholar
[8]
Pohjonen A, Somani M, Pyykkönen J, Paananen J and Porter D 2016 The onset of the austenite to bainite phase transformation for different cooling paths and steel compositions vol 716
DOI: 10.4028/www.scientific.net/kem.716.368
Google Scholar
[9]
Pohjonen A, Javaheri V, Paananen J and Pyykkönen J 2021 Semi-Automatic Optimization of Steel Heat Treatments for Achieving Desired Microstructure Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, September 22-24, Virtual Conference, Finland, Linköping Electronic Conference Proceedings 176 : 19 139–45
DOI: 10.3384/ecp20176139
Google Scholar
[10]
Javaheri V, Pohjonen A, Asperheim J I, Ivanov D and Porter D 2019 Physically based modeling, characterization and design of an induction hardening process for a new slurry pipeline steel Mater Des 182
DOI: 10.1016/j.matdes.2019.108047
Google Scholar
[11]
Pohjonen A, Kaikkonen P, Seppälä O, Ilmola J, Javaheri V, Manninen T and Somani M 2021 Numerical and experimental study on thermo-mechanical processing of medium-carbon steels at low temperatures for achieving ultrafine-structured bainite Materialia (Oxf) 18 101150
DOI: 10.1016/j.mtla.2021.101150
Google Scholar
[12]
Kaikkonen P M, Somani M C, Miettunen I H, Porter D A, Pallaspuro S T and Kömi J I 2020 Constitutive flow behaviour of austenite at low temperatures and its influence on bainite transformation characteristics of ausformed medium-carbon steel Materials Science and Engineering A 775
DOI: 10.1016/j.msea.2020.138980
Google Scholar
[13]
Herring D H 2018 A comprehensive guide to heat treatment Industrialheating. com
Google Scholar
[14]
Chen X 2014 The finite element analysis of austenite decomposition during continuous cooling in 22MnB5 steel Model Simul Mat Sci Eng 22
DOI: 10.1088/0965-0393/22/6/065005
Google Scholar
[15]
Victor Li M, Niebuhr D v., Meekisho L L and Atteridge D G 1998 A computational model for the prediction of steel hardenability Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
DOI: 10.1007/s11663-998-0101-3
Google Scholar
[16]
Pietrzyk M and Kuziak R 2011 Computer aided interpretation of results of the Jominy test Archives of Civil and Mechanical Engineering 11
DOI: 10.1016/s1644-9665(12)60111-3
Google Scholar
[17]
le Masson P, Loulou T, Artioukhine E, Rogeon P, Carron D and Quemener J J 2002 A numerical study for the estimation of a convection heat transfer coefficient during a metallurgical "Jominy end-quench" test International Journal of Thermal Sciences 41
DOI: 10.1016/s1290-0729(02)01345-5
Google Scholar
[18]
Ilmola J, Pohjonen A, Koskenniska S, Seppälä O, Leinonen O, Jokisaari J, Pyykkönen J and Larkiola J 2021 Coupled heat transfer and phase transformations of dual-phase steel in coil cooling Mater Today Commun 26 101973
DOI: 10.1016/j.mtcomm.2020.101973
Google Scholar
[19]
Javaheri V, Pohjonen A, Asperheim J I, Ivanov D and Porter D 2019 Physically based modeling, characterization and design of an induction hardening process for a new slurry pipeline steel Mater Des 182 108047
DOI: 10.1016/j.matdes.2019.108047
Google Scholar
[20]
Pohjonen A, Kaijalainen A, Mourujärvi J and Larkiola J 2018 Computer simulations of austenite decomposition of hot formed steels during cooling Procedia Manuf 15 1864–71
DOI: 10.1016/j.promfg.2018.07.203
Google Scholar
[21]
Pohjonen A, Paananen J, Mourujärvi J, Manninen T, Larkiola J and Porter D 2018 Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling AIP Conference Proceedings vol 1960 p.090010
DOI: 10.1063/1.5034936
Google Scholar
[22]
Pohjonen A, Kaijalainen A, Mourujärvi J and Larkiola J 2018 Computer simulations of austenite decomposition of hot formed steels during cooling Procedia Manuf 15 1864–71
DOI: 10.1016/j.promfg.2018.07.203
Google Scholar
[23]
Pohjonen A, Somani M and Porter D 2018 Modelling of austenite transformation along arbitrary cooling paths Comput Mater Sci 150 244–51
DOI: 10.1016/j.commatsci.2018.03.052
Google Scholar
[24]
Martin D C 2011 Selected heat conduction problems in thermomechanical treatment of steel Doctoral Dissertation (University of Oulu)
Google Scholar
[25]
Browne K M 1998 Modelling the thermophysical properties of iron and steels Proceedings of Materials 98, The Biennial Conference of the Institute of Materials Engineering, Australasia, Ltd ed M Ferry p.433–8
Google Scholar