Catalytic Pyrolysis of Biomass Waste Mixture over Activated Carbon and Zeolite Catalyst for the Production Bio Oil

Article Preview

Abstract:

Biomass waste is one of the promising resource for the production of bio oil. In this study, a mixture of biomass waste will be pyrolyzed in the presence of activated carbon and zeolite as the catalyst. The catalyst concentrations were varied at 2%, 4%, 6%, respectively. While, the pyrolysis process was carried out at 500°C, for 60 minutes, with a nitrogen flow of 3 L/min. The highest bio oil yield was obtained the pyrolysis process by using zeolite with 35% at 4% w/w of the catalyst concentration. The lowest acid number obtained was 42.92 on 4% zeolite catalyst with rice husk biomass as the raw material, the best viscosity was obtained on 4% activated carbon multi feedstock with a viscosity value of 4.96 cP. The best density was obtained in multi feedstock with 4% zeolite catalyst and rice husk with 4% zeolite of 0.996 g/mL.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-117

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Parinduri, T. Parinduri, Konversi Biomassa Sebagai Sumber Energi Terbarukan, J. Elec. Tech. 5 (2020) 88 - 92.

Google Scholar

[2] R.R. Amin, R.R. Sova, D.I. Laily, D.K. Maharani, Studi Potensi Limbah Tembakau Menjadi Bio-Oil Menggunakan Metode Fast-Pyrolysis Sebagai Energi Terbarukan, J. Kim. Ris. 5 (2020) 151.

DOI: 10.20473/jkr.v5i2.22513

Google Scholar

[3] N. Febrianti, F. Filiana, P. Hasanah, Potential of Renewable Energy Resources from Biomass Derived by Natural Resources In Balikpapan, J. Presipitasi Media Komun. Dan Pengemb. Tek. Lingkung. 17 (2020) 316–323.

DOI: 10.14710/presipitasi.v17i3.316-323

Google Scholar

[4] P. Papilo, E. Hambali, R. Fariz Pari, Penilaian Potensi Biomassa Sebagai Alternatif Energi Kelistrikan, J. PASTI. IX (2016) 164–176.

Google Scholar

[5] Z. Al-hamamre, M. Saidan, M. Hararah, K. Rawajfeh, Wastes and biomass materials as sustainable-renewable energy resources for Jordan, Renew. Sustain. Energy Rev. 67 (2017) 295–314.

DOI: 10.1016/j.rser.2016.09.035

Google Scholar

[6] U.S. Ramli, Characterization of Apigenin and Luteolin Derivatives from Oil Palm ( Elaeis guineensis Jacq.) Leaf Using LC − ESI-MS/MS, J. Agri. Food Chem. 60 (2012) 11201 - 10.

DOI: 10.1021/jf303267e

Google Scholar

[7] M. Arief, R. Adawiyah, Nilai Ekonomi Pemanfaatan Limbah Kelapa Sawit, J. Agripita. 5 (2018) 825–837.

Google Scholar

[8] R. Azri, S. Bahri, Aman, Pirolisis Biomassa Pelepah Sawit Menjadi Bio-Oil Dengan Katalis Natural Zeolit Dealuminated (NZA), Jom FTEKNIK. 1 (2014) 1–11.

DOI: 10.31315/e.v11i1.325

Google Scholar

[9] S. Wibowo, Karakteristik Bio-Oil Dari Limbah Industri Hasil Hutan Me Nggunakan Pirolisis Cepat, J. Forest Prod. Res. 34 (2020) 61–76.

DOI: 10.20886/jphh.2016.34.1.61-76

Google Scholar

[10] K. Ridhuan, D. Irawan, Y. Zanaria, F. Firmansyah, Pengaruh Jenis Biomassa Pada Pembakaran Pirolisis Terhadap Karakteristik dan Efisiensi Bioarang-Asap Cair yang Dihasilkan, Media Mesin. 20 (2019) 18–27.

DOI: 10.23917/mesin.v20i1.7976

Google Scholar

[11] V.I. Putri, Mukhlis, B. Hidayat, Pemberian Beberapa Jenis Biochar Untuk Memperbaiki Sifat Kimia Tanah Ultisol Dan Pertumbuhan Tanaman Jagung, J. Online Agro. 5 (2017) 824–828.

DOI: 10.26737/var.v5i1.2799

Google Scholar

[12] A.D. Tarigan, Nelvia, Pengaruh Pemberian Biochar Tandan Kosong Kelapa Sawit Dan Mikoriza Terhadap Pertumbuhan Dan Hasil Tanaman Jagung Manis (Zea mays sacharrata L.) Di Tanah Ultisol, J. Agro. 12 (2020) 23–37.

DOI: 10.33512/jur.agroekotetek.v12i1.8769

Google Scholar

[13] A. Ferdiyanto, F.H. Munfaridi, A. Hidayat, Pengaruh Temperatur Proses Pirolisis Tandan Kososng Kelapa Sawit (Tkks) Terhadap Karakteristik Bio - Oil, Khazanah J. Mhs. 8 (2020) 12.

Google Scholar

[14] T. Iskandar, S. Perbawani, A. Anggraini, Pra Rancang Bangun Pabrik Pupuk Biochar Dari Tandan Kosong Kelapa Sawit Dengan Kapasitas 11 .000 Ton / Tahun Menggunakan Alat Utama Rotary Kiln, eUREKA. 3 (2019) 245–250.

DOI: 10.32734/jtk.v4i4.1510

Google Scholar

[15] Q. Tang, Y. Chen, H. Yang, M. Liu, H. Xiao, Z. Wu, H. Chen, S.R. Naqvi, Prediction of Bio-oil Yield and Hydrogen Contents Based on Machine Learning Method: Effect of Biomass Compositions and Pyrolysis Conditions, Energy and Fuels. 34 (2020) 11050–11060.

DOI: 10.1021/acs.energyfuels.0c01893

Google Scholar

[16] H. Prasetiawan, D.S. Fardhyanti, W. Fatrisari, H. Hadiyanto, Preliminary Study on The Bio-Oil Production from Multi Feed-Stock Biomass Waste via Fast Pyrolysis Process, J. Adv. Res. Fluid Mech. Therm. Sci. 103 (2023) 216–227.

DOI: 10.37934/arfmts.103.2.216227

Google Scholar

[17] Y. Ramadhani, N. Kholidah, Pengaruh Aktivasi Katalis Zeolit terhadap Hasil Pirolisis Limbah Styrofoam, Pros. Semin. Nas. Sains Dan Teknol. Terap. 2 (2019) 1–11.

DOI: 10.14710/jksa.16.1.33-37

Google Scholar

[18] R. Ermawati, B.N. Jati, I. Rumondang, E. Oktarina, S. Naimah, Pengaruh Residue Catalytic Cracking (RCC) dan Zeolit terhadap Kualitas Crude Oil Hasil Pirolisis Limbah Plastik Polietilena, J. Kim. Dan Kemasan. 38 (2016) 47.

DOI: 10.24817/jkk.v38i1.1978

Google Scholar

[19] J. Siti, M. Ilham, The Effectiveness of Activated Charcoal from Coconut Shell as The Adsorbent of Water Purification in The Laboratory Process of Chemical Engineering Universitas Ahmad Dahlan Yogyakarta, J. Tek. Kim. Ling. 4 (2020) 113–120.

DOI: 10.33795/jtkl.v4i2.151

Google Scholar

[20] P.N.Y. Yek, R.K. Liew, M.S. Osman, C.L. Lee, J.H. Chuah, Y.K. Park, S.S. Lam, Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon, J. Environ. Manage. 236 (2019) 245–253.

DOI: 10.1016/j.jenvman.2019.01.010

Google Scholar

[21] G. Jaria, C.P. Silva, J.A.B.P. Oliveira, S.M. Santos, M.V. Gil, M. Otero, V. Calisto, V.I. Esteves, Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design, J. Hazard. Mater. 370 (2019) 212–218.

DOI: 10.1016/j.jhazmat.2018.02.053

Google Scholar

[22] M.K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R.S. Singh, B.N. Rai, Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4, Resour. Technol. 2 (2016) S63–S70.

DOI: 10.1016/j.reffit.2016.11.011

Google Scholar

[23] L. Efiyanti, S.A. Wati, M. Maslahat, Pembuatan dan Analisis Karbon Aktif dari Cangkang Buah Karet dengan Proses Kimia dan Fisika, J. Ilmu Kehutan. 14 (2020) 94.

DOI: 10.22146/jik.57479

Google Scholar

[24] A. Kuntaarsa, Tinjauan Titik Nyala Dari Pembuatan Bio Oil Dari Pirolisis Kayu Pinus dengan Katalisator Zeolit Alam, 18 (2019) 392–397.

Google Scholar

[25] E. Emi, S.B. Wahyudi, B. Eni, K.R. Yudha, Pengaruh Suhu dan Perbandingan Katalis Zeolit Terhadap KArakteristik Produk Hasil Pirolisis Kayu Glugu, Pros. Sem. Nas. Teknoin 2014 Bidang Teknik Kimia. (2014) 32 - 36.

Google Scholar

[26] F. Febriyanti, N. Fadila, A.S. Sanjaya, Y. Bindar, A. Irawan, Pemanfaatan Limbah Tandan Kosong Kelapa Sawit Menjadi Bio-Char, Bio-Oil Dan Gas Dengan Metode Pirolisis, J. Chemurg. 3 (2019) 12.

DOI: 10.30872/cmg.v3i2.3578

Google Scholar

[27] BSN, Standar Nasional Indonesia 7182:2015 Biodiesel, Badan Standarisasi Nas. (2015) 1–88.

Google Scholar

[28] M. Jahiding, I. Usman, R. S. Rizki, Haryani, Mashuni, Pengaruh Kosentrasi Zeolit Terhadap Kualitas Bio-Oil Yang Diproduksi dari Limbah Sabut Kelapa Muda (Cocos nucifera) Menggunakan Metode Piro-katalitik, Gravitasi. 19 (2020) 29–35.

DOI: 10.22487/gravitasi.v19i2.15359

Google Scholar

[29] N. Prasetio, D. Pranita, A.S. Sanjaya, Pembuatan Bio Oil Dari Sekam Padi dengan Proses Pirolisis Lambat, J. Sains Dan Terap. Kim. 14 (2020) 36.

DOI: 10.20527/jstk.v14i1.6542

Google Scholar

[30] Z. Khoirunnisa, A.S. Wardana, R. Rauf, Analisis Kualitatif dan Kuantitatif Asam Lemak Tak Jenuh Omega-3 dari Minyak Ikan Patin (Pangasius Pangasius) dengan Metoda Kromatografi Gas. Jurnal Peneli, J. Kesehat. 12 (2019) 81–90.

DOI: 10.23917/jk.v12i2.9764

Google Scholar

[31] A.M. Sukiran, K.S. Loh, A.N. Bakar, Production of Bio-oil from Fast Pyrolysis of Oil Palm Biomass using Fluidised Bed Reactor, J. Eng. Tech. Pol. 6 (2016) 52–62.

Google Scholar

[32] F. Arif, Karakterisasi Bio Oil dari Limbah Batang Ketela Pohon (Manihot utilissima) menggunakan Katalis Zeolit, Thesis. (2020) 1–86.

Google Scholar

[33] S.H. Chang, Bio-oil derived from palm empty fruit bunches: Fast pyrolysis, liquefaction and future prospects, Biomass and Bioenergy. 119 (2018) 263–276.

DOI: 10.1016/j.biombioe.2018.09.033

Google Scholar

[34] E. Alptekin, M. Canakci, Determination of the density and the viscosities of biodiesel-diesel fuel blends, Renew. Energy. 33 (2008) 2623–2630.

DOI: 10.1016/j.renene.2008.02.020

Google Scholar

[35] D.S. Fardhyanti, Megawati, C. Kurniawan, R.A. Sigit Lestari, B. Triwibowo, Producing Bio-Oil from Coconut Shell by Fast Pyrolysis Processing, MATEC Web Conf. 237 (2018) 1–5.

DOI: 10.1051/matecconf/201823702001

Google Scholar

[36] F.F. Fleming, L. Yao, P.C. Ravikumar, L. Funk, B.C. Shook, Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore, J. Med. Chem. 53 (2010)

DOI: 10.1021/jm100762r

Google Scholar

[37] S.S. Liaw, Z. Wang, P. Ndegwa, C. Frear, S. Ha, C.Z. Li, M. Garcia-Perez, Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood, J. Anal. Appl. Pyrolysis. 93 (2012) 52–62.

DOI: 10.1016/j.jaap.2011.09.011

Google Scholar

[38] E. Gresinta, R.D. Pratiwi, F. Damayanti, E.P. Putra, Komparasi Yield Nata De Tomato Dengan Nata De Coco Berdasarkan Lama Fermentasi, Indones. J. Integr. Sci. Educ. 1 (2019) 169–174.

DOI: 10.29300/ijisedu.v1i2.2248

Google Scholar

[39] R. Dolah, R. Karnik, H. Hamdan, A comprehensive review on biofuels from oil palm empty bunch (Efb): Current status, potential, barriers and way forward, Sustain. 13 (2021) 10210.

DOI: 10.3390/su131810210

Google Scholar

[40] D.S. Fardhyanti, M. Megawati, H. Istanto, M.K. Anajib, P. Prayogo, U. Habibah, Extraction of phenol from bio-oil produced by pyrolysis of coconut shell, J. Phys. Sci. 29 (2018) 195–202.

DOI: 10.21315/jps2018.29.s2.15

Google Scholar

[41] D.S. Fardhyanti, N.A.C. Imani, A. Damayanti, S.N. Mardhotillah, M. Afifudin, A. Mulyaningtyas, A.E. Akhir, W. Nuramalia, P. Maulana, The separation of phenolic compounds from bio-oil produced from pyrolysis of corncobs, AIP Conf. Proc. 2243 (2018) 020005.

DOI: 10.1063/5.0001078

Google Scholar

[42] D.S. Fardhyanti, Megawati, H. Istanto, M.K. Anajib, Prayogo, U. Habibah, Extraction of phenol from bio-oil produced by pyrolysis of coconut shell, J. Phys. Sci. 29 (2018) 195 - 202.

DOI: 10.21315/jps2018.29.s2.15

Google Scholar