An Investigation about Microstructures, Mechanical Properties and Corrosion Behaviour of the TIG - MIG Hybrid Welded Dissimilar UNS 2205 and is 2062 Steels

Article Preview

Abstract:

The connecting of contrasting metals, namely double stainless steel to steel made of carbon, has taken place. performed using a hybrid welding system. A TIG and MIG welding joining based hybrid joining method was designed. The microstructures of the dissimilar metal joints were studied and the grains are coarser as contrast to the use of a single the welding process process by itself. With the addition of TIG welding to the process of MIG welding, the water-holding capacity of the metal in molten state pool is significantly improved. The nominal corrosion behaviour of the weldments was found better than the single arc welding system alone. The passivation behaviour of the joints was in the similar line to that of double stainless steel base metal. The pitting resistance of the joints in 1 M NaCl solution was inferior to the base metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-102

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lundin, C. D. (1982). Dissimilar metal welds-transition joints literature review. Welding Journal, 61(2), 58-63.

Google Scholar

[2] Missori, S., & Koerber, C. (1997). Laser beam welding of austenitic-ferritic transition joints. Welding Journal-Including Welding Research Supplement, 76(3)..

Google Scholar

[3] Pan, C., & Zhang, Z. (1996). Morphologies of the transition region in dissimilar austenitic-ferritic welds. Materials Characterization, 36(1), 5-10.

DOI: 10.1016/1044-5803(95)00249-9

Google Scholar

[4] Omar A (1998) Effects of welding parameters on hard zone formation at dissimilar metal welds. Weld J 77:86s–99s

Google Scholar

[5] Li, G. F., & Congleton, J. (2000). Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 C. Corrosion Science, 42(6), 1005-1021.

DOI: 10.1016/s0010-938x(99)00131-6

Google Scholar

[6] Joseph, A., Ramesh, A. S., Jayakumar, T., &Murugan, N. (2001). Failure Analysis of a Dissimilar Weld Joint in a Steam Generator/Schadensanalyseeiner Schwarz-Weiß-Schweißverbindung in einemDampfgenerator. Practical Metallography, 38(12), 667-679.

DOI: 10.1515/pm-2001-381202

Google Scholar

[7] Barnhouse, E. J., &Lippold, J. C. (1998). Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels. WELDING JOURNAL-NEW YORK-, 77, 477-s.

Google Scholar

[8] McPherson, N. A., Chi, K., McLean, M. S., & Baker, T. N. (2003). Structure and properties of carbon steel to duplex stainless steel submerged arc welds. Materials science and technology, 19(2), 219-226..

DOI: 10.1179/026708303225009643

Google Scholar

[9] Rajeev, R., Samajdar, I., Raman, R., Harendranath, C. S., & Kale, G. B. (2001).Origin of hard and soft zone formation during cladding of austenitic/duplex stainless steel on plain carbon steel. Materials science and technology, 17(8), 1005-1011.

DOI: 10.1179/026708301101510852

Google Scholar

[10] Kaçar, R., &Acarer, M. (2003). Microstructure–property relationship in explosively welded duplex stainless steel–steel. Materials Science and Engineering: A, 363(1-2), 290-296.

DOI: 10.1016/s0921-5093(03)00643-9

Google Scholar

[11] Kanemaru, S., Sasaki, T., Sato, T., Mishima, H., Tashiro, S., & Tanaka, M. (2014). Study for TIG–MIG hybrid welding process. Welding in the World, 58(1), 11-18.

DOI: 10.1007/s40194-013-0090-y

Google Scholar

[12] Temmar, M., Hadji, M., &Sahraoui, T. (2011). Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints. Materials & Design, 32(6), 3532-3536.

DOI: 10.1016/j.matdes.2011.02.011

Google Scholar

[13] Meng, X., Qin, G., Zhang, Y., Fu, B., & Zou, Z. (2014). High speed TIG–MAG hybrid arc welding of mild steel plate. Journal of Materials Processing Technology, 214(11), 2417-2424.

DOI: 10.1016/j.jmatprotec.2014.05.020

Google Scholar

[14] Zhang, H. T., Liu, J. H., & Feng, J. C. (2014). Effect of auxiliary TIG arc on formation and microstructures of aluminum alloy/stainless steel joints made by MIG welding-brazing process. Transactions of Nonferrous Metals Society of China, 24(9), 2831-2838.

DOI: 10.1016/s1003-6326(14)63415-4

Google Scholar

[15] Akbari, D., &Sattari-Far, I. (2009). Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints. International journal of pressure vessels and piping, 86(11), 769-776.

DOI: 10.1016/j.ijpvp.2009.07.005

Google Scholar

[16] Naje, A. S., Chelliapan, S., Zakaria, Z., & Abbas, S. A. (2015). Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. Int. J. Electrochem. Sci, 10(7), 5924-5941.

DOI: 10.1016/s1452-3981(23)17305-6

Google Scholar

[17] Duan, Z., Qin, R., & He, G. (2014). Mass transfer and weld appearance of 316L stainless steel covered electrode during shielded metal arc welding. Metallurgical and Materials Transactions A, 45(2), 843-853.

DOI: 10.1007/s11661-013-2001-7

Google Scholar

[18] Sun, P., Liu, C., & Xu, J. (2009). Phase field model of thermo-induced marangoni effects in the mixtures and its numerical simulations with mixed finite element method. Communications in Computational Physics, 6(5), 1095..

DOI: 10.4208/cicp.2009.v6.p1095

Google Scholar

[19] Lu, S., Fujii, H., Sugiyama, H., Tanaka, M., &Nogi, K. (2002). Weld penetration and Marangoni convection with oxide fluxes in GTA welding. Materials Transactions, 43(11), 2926-2931.

DOI: 10.2320/matertrans.43.2926

Google Scholar

[20] Muthupandi, V., Srinivasan, P. B., Seshadri, S. K., &Sundaresan, S. (2003). Corrosion behaviour of duplex stainless steel weld metals with nitrogen additions. Corrosion engineering, science and technology, 38(4), 303-308.

DOI: 10.1179/147842203225008895

Google Scholar

[21] N.Mohanraj, N.Mathan Kumar, P.Prathap, P.Ganeshan, K.Raja, V.Mohanavel, Alagar Karthick, M. Muhibbullah, Mechanical Properties and Electrical Resistivity of the Friction Stir Spot-Welded Dissimiliar Al-Cu Joints, International Journal of Polymer Science, 2022, 208-222.

DOI: 10.1155/2022/4130440

Google Scholar