[1]
O.B. Akpor, G.O. Ohiobor, T.D. Olaolu, Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering 2(4), (2014), 37-43.
DOI: 10.11648/j.abb.20140204.11
Google Scholar
[2]
G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters 17 (1), (2018), 145-155.
DOI: 10.1007/s10311-018-0785-9
Google Scholar
[3]
P.S. Davies, The biological basis of wastewater treatment, Strathkelvin Instruments Ltd, 3. 2005.
Google Scholar
[4]
H. I. Abdel-Shafy, M.A. El-Khateeb, M.S. Mansour, Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration. Water Science and Technology 74(3), (2016), 586-594.
DOI: 10.2166/wst.2016.234
Google Scholar
[5]
S. I. Abou-Elela, M. E. Fawzy, M. M. El-Sorogy, S. A. Abo-El-Enein, Bio-immobilization of Cr (VI) and its impact on the performance of a pilot scale anaerobic sludge reactor treating municipal wastewater. Egyptian Journal of Chemistry 61(4), (2018), 629-637.
DOI: 10.21608/ejchem.2018.3849.1333
Google Scholar
[6]
M.A. El-Bendary, M.E. Fawzy, M. Abdelraof, M. El-Sedik, M.A. Allam, Efficient malachite green biodegradation by Pseudomonas plecoglossicide MG2: process optimization, application in bioreactors, and degradation pathway. Microbial Cell Factories 22(1), (2023)192.
DOI: 10.1186/s12934-023-02194-z
Google Scholar
[7]
L. Rizzo, S. Malato, D. Antakyali, V. G. Beretsou, M. B. Đolić, W. Gernjak, G. Mascolo, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment 655, (2018). 986-1008.
DOI: 10.1016/j.scitotenv.2018.11.265
Google Scholar
[8]
P. Rajasulochana, V. Preethy. Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resource-Efficient Technologies, 2(4), (2016) 175-184.
DOI: 10.1016/j.reffit.2016.09.004
Google Scholar
[9]
V. Marchal, R. Dellink, D. Van Vuuren, C. Clapp, J. Chateau, B. Magné, J. van Vliet, OECD environmental outlook to 2050. Organization for Economic Co-operation and Development 8, (2011) 397- 413.
DOI: 10.1787/env_outlook-2012-6-en
Google Scholar
[10]
S. I. Abou‐Elela, M. E. Fawzy, S. A. El‐Shafai, Treatment of hazardous wastewater generated from metal finishing and electro‐coating industry via self‐coagulation: Case study. Water Environment Research, 93 (9), (2021). 1476-1486.
DOI: 10.1002/wer.1552
Google Scholar
[11]
M. Gad, M.E. Fawzy, A. Z. Al-Herrawy, S. M. Abdo, N. Nabet, A. Hu, PacBio next-generation sequencing uncovers Apicomplexa diversity in different habitats. Scientific Reports 13(1), (2023) 15063.
DOI: 10.1038/s41598-023-40895-y
Google Scholar
[12]
H.M. Ahmed, M.E. Fawzy, H.F. Nassar, Effective chemical coagulation treatment process for cationic and anionic dyes degradation. Egyptian Journal of Chemistry 65(8), (2022) 299-307.
DOI: 10.21608/ejchem.2022.109537.4993
Google Scholar
[13]
M.S. Hellal, A. M. Rashad, K. K. Kadimpati, S. K. Attia, M. E. Fawzy, Adsorption characteristics of nickel (II) from aqueous solutions by Zeolite Scony Mobile-5 (ZSM-5) incorporated in sodium alginate beads. Scientific Reports, 13 (1), (2023) 19601.
DOI: 10.1038/s41598-023-45901-x
Google Scholar
[14]
R.R.Z. Tarpani, A. Azapagic, Life cycle costs of advanced treatment techniques for wastewater reuse and resource recovery from sewage sludge. Journal of Cleaner Production, 204, (2018) 832-847.
DOI: 10.1016/j.jclepro.2018.08.300
Google Scholar
[15]
G. Laera, M. N. Chong, B. Jin, A. Lopez, An integrated MBR–TiO2 photocatalysis process for the removal of Carbamazepine from simulated pharmaceutical industrial effluent. Bioresource technology 102(13), (2011) 7012-7015.
DOI: 10.1016/j.biortech.2011.04.056
Google Scholar
[16]
E. Arche, G. M. Wolfaardt, J. H. Wyk Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA 43(4), (2017) 684-706.
DOI: 10.4314/wsa.v43i4.16
Google Scholar
[17]
Z. Tigrine, H. Aburideh, M. Abbas, S. Hout, N. K. Merzouk, D. Zioui, M. Khateb, Membrane desalination technology in Algeria: reverse osmosis for coastal areas, In Energy for a Better Environment and Improved Sustainability 2, (2018) 197-218.
DOI: 10.1007/978-3-319-62575-1_15
Google Scholar
[18]
B. Durham, Case studies of wastewater re-use for petrochemical, power and paper industry. In Membrane Technology in Water and Wastewater Treatment, (2000) 241-247.
DOI: 10.1039/9781847551351-00241
Google Scholar
[19]
V. Buscio, M. J. Marín, M. Crespi, C. Gutiérrez-Bouzán, Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chemical Engineering Journal, 265, (2015) 122-128.
DOI: 10.1016/j.cej.2014.12.057
Google Scholar
[20]
M. Vourch, B. Balannec, B. Chaufer, G. Dorange, Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 219 (1-3), (2008) 190-202.
DOI: 10.1016/j.desal.2007.05.013
Google Scholar
[21]
C. M. Zhang, L. M. Xu, P. C. Xu, X. C. Wang, Elimination of viruses from domestic wastewater: requirements and technologies. World Journal of Microbiology and Biotechnology 32(4), (2016) 32-69.
DOI: 10.1007/s11274-016-2018-3
Google Scholar
[22]
T. Liu, Z. L. Chen, W. Z. Yu, J. M. Shen, J. Gregory, Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water. Water Research, 45(14), (2011) 4260-4268.
DOI: 10.1016/j.watres.2011.05.037
Google Scholar
[23]
E. Arkhangelsky, V. Gitis, Effect of transmembrane pressure on rejection of viruses by ultrafiltration membranes. Separation and Purification Technology 62(3), (2008) 619-628.
DOI: 10.1016/j.seppur.2008.03.013
Google Scholar
[24]
M. Racar, D. Dolar, A. Špehar, K. Košutić, Application of UF/NF/RO membranes for treatment and reuse of rendering plant wastewater. Process Safety and Environmental Protection. 105, (2017) 386-392.
DOI: 10.1016/j.psep.2016.11.015
Google Scholar
[25]
D. Falsanisi, L. Liberti, M. Notarnicola, Ultrafiltration (UF) pilot plant for municipal wastewater reuse in agriculture: impact of the operation mode on process performance. Water 2(4), (2010) 872-885.
DOI: 10.3390/w2040872
Google Scholar
[26]
S. Gur-Reznik, I. Katz, C. G. Dosoretz, Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research. 42(6-7), (2008) 1595-1605.
DOI: 10.1016/j.watres.2007.10.004
Google Scholar
[27]
I. Michael-Kordatou, C. Michael, X. Duan, X. He, D. D. Dionysiou, M. A. Mills, D. Fatta-Kassinos, Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications. Water Research 77, (2015) 213-248.
DOI: 10.1016/j.watres.2015.03.011
Google Scholar
[28]
Y. Zheng, S. Yu, S. Shuai, Q. Zhou, Q. Cheng, M. Liu, C. Gao, Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 314, (2013) 89-95.
DOI: 10.1016/j.desal.2013.01.004
Google Scholar
[29]
M. F. Abid, M. A. Zablouk, A. M. Abid-Alameer, Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian journal of environmental health science and engineering 9(1), (2012) 8-17.
DOI: 10.1186/1735-2746-9-17
Google Scholar
[30]
N. Garcia, J. Moreno, E. Cartmell, I. Rodriguez-Roda, S. Judd, The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse. Environmental technology 34(24), (2013) 3183-3189.
DOI: 10.1080/09593330.2013.808244
Google Scholar
[31]
M.E. Fawzy, I. Abdelfattah, M. E. Abuarab, E. Mostafa, K. M. Aboelghait, M. H. El-Awady, Sustainable approach for pharmaceutical wastewater treatment and reuse: case study. Journal of Environmental Science and Technology 11(4), (2018) 209 – 219.
DOI: 10.3923/jest.2018.209.219
Google Scholar
[32]
S. I. Abou-Elela, M. E. Fawzy, W. Abdel-Halim, Packed bed up-flow anaerobic sludge blanket combined with multistage sand fine roughing filtration for municipal wastewater treatment and reuse. International Journal of Sustainable Development and Planning, 8(4), (2013) 549-562.
DOI: 10.2495/sdp-v8-n4-549-562
Google Scholar
[33]
M. E. Fawzy, H. M. Ahmed, H. F. Nassar, Chicken bone ash as a cost-effective and efficient adsorbent for phenol removal from aqueous solution. Desalination and Water Treatment 281, (2023) 255-264.
DOI: 10.5004/dwt.2023.29141
Google Scholar
[34]
H.M. Ahmed, N. A. Sobhy, M. E. Fawzy, Green Biosynthesis of Zinc Oxide Nanoparticles Utilizing Pomegranate Peel Extract for Grey Water Treatment. Solid State Phenomena, 342, (2023) 27-36.
DOI: 10.4028/p-575588
Google Scholar
[35]
ECP 501/2015: Egyptian code of practice for the reuse of treated municipal wastewater for agricultural purposes, the Ministry of housing utilities and urban communities, 2015.
Google Scholar
[36]
H. F. Nassar, M. E. Fawzy, Evaluation of Sand Filter as a Non-conventional Post Treatment of Oil Refinery Wastewater: Effect of Flow Rate. Egyptian Journal of Chemistry, 64(7), (2021) 3935-3942.
DOI: 10.21608/ejchem.2021.61387.3318
Google Scholar
[37]
H. F. Nassar, H. M. Ahmed, M. E. Fawzy, Assessment, characterization, and separation of Alizarin red dye from aqueous solution using M-Fe layered double hydroxide. Desalination and Water Treatment 303, (2023) 193-199.
DOI: 10.5004/dwt.2023.29740
Google Scholar
[38]
F. Gholami-Borujeni, K. Naddafi, F. Nejatzade-Barandozi, Application of catalytic ozonation in treatment of dye from aquatic solutions. Desalination and Water Treatment. 51(34-36), (2013) 6545-6551.
DOI: 10.1080/19443994.2013.769491
Google Scholar
[39]
R. Mailler, J. Gasperi, Y. Coquet, S. Deshayes, S. Zedek, C. Cren-Olivé, N. Cartiser, V. Eudes, A. Bressy, E. Caupos, R. Moilleron, Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water research, 72, (2015) 315-330.
DOI: 10.1016/j.watres.2014.10.047
Google Scholar
[40]
J. Altmann, F. Zietzschmann, E. L. Geiling, A. S. Ruhl, A. Sperlich, M. Jekel, Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater. Chemosphere 125, (2015) 198-204.
DOI: 10.1016/j.chemosphere.2014.12.061
Google Scholar
[41]
L. Sbardella, J. Comas, A. Fenu, I. Rodriguez-Roda, M. Weemaes, Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater. Science of the Total Environment 636, (2018) 519-529.
DOI: 10.1016/j.scitotenv.2018.04.214
Google Scholar
[42]
J.L. Wang, L. J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology. 42(3), (2012) 251-325.
DOI: 10.1080/10643389.2010.507698
Google Scholar
[43]
Y. Deng, R, Zhao, Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports 1(3), (2015) 167-176.
DOI: 10.1007/s40726-015-0015-z
Google Scholar
[44]
H. Zhou, D. W. Smith, Advanced technologies in water and wastewater treatment. Journal of Environmental Engineering and Science 1(4), (2002) 247-264.
Google Scholar
[45]
M. Bourgin, B. Beck, M. Boehler, E. Borowska, J. Fleiner, E. Salhi, C. S. McArdell, Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Research, 129, (2018) 486-498.
DOI: 10.1016/j.watres.2017.10.036
Google Scholar
[46]
P. Alfonso-Muniozguren, J. Lee, M. Bussemaker, R. Chadeesingh, C. Jones, D. Oakley, D. A. Saroj, Combined activated sludge-filtration-ozonation process for abattoir wastewater treatment. Journal of Water Process Engineering, 25, (2018) 157-163.
DOI: 10.1016/j.jwpe.2018.07.009
Google Scholar
[47]
H. H. Jang, G. T. Seo, D. W. Jeong, Advanced oxidation processes and nanofiltration to reduce the color and chemical oxygen demand of waste soy sauce. Sustainability, 10(8), (2018) 2929.
DOI: 10.3390/su10082929
Google Scholar
[48]
D. P. Minh, P. Gallezot, S. Azabou, S. Sayadi, M. Besson, Catalytic wet air oxidation of olive oil mill effluents: 4. Treatment and detoxification of real effluents, Applied Catalysis B: Environmental 84(3-4), (2008) 749-757.
DOI: 10.1016/j.apcatb.2008.06.013
Google Scholar
[49]
A. Garg, A. Mishra, Degradation of organic pollutants by wet air oxidation using non noble metal-based catalysts. Journal of Hazardous, Toxic, and Radioactive Waste, 17(2), (2013) 89-96.
DOI: 10.1061/(asce)hz.2153-5515.0000152
Google Scholar
[50]
C. Liu, X. X. Chen, J. Zhang, H. Z. Zhou, L. Zhang, Y. K. Guo, Advanced treatment of bio-treated coal chemical wastewater by a novel combination of micro bubble catalytic ozonation and biological process. Separation and Purification Technology 197, (2018) 295-301.
DOI: 10.1016/j.seppur.2018.01.005
Google Scholar
[51]
V. Pawar, S. Gawande, An overview of the Fenton process for industrial wastewater. IOSR Journal of Mechanical and Civil Engineering, 2, (2015) 127-136.
Google Scholar
[52]
S. Giannakis, I. Hendaoui, M. Jovic, D. Grandjean, L. F. De Alencastro, H. Girault, C, Pulgarin, Solar photo-Fenton and UV/H2O2 processes against the antidepressant Venlafaxine in urban wastewaters and human urine. Intermediates formation and biodegradability assessment. Chemical Engineering Journal, 308, (2017) 492-504.
DOI: 10.1016/j.cej.2016.09.084
Google Scholar
[53]
L. G. Silva, F. C. Moreira, A. A. Souza, S. M. Souza, R. A. Boaventura, V. J. Vilar, Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry. Journal of Cleaner Production 198, (2018) 430-442.
DOI: 10.1016/j.jclepro.2018.07.001
Google Scholar
[54]
S. O. Ganiyu, E. V. dos Santos, E. C. T. de Araújo Costa, C. A. Martínez-Huitle, Electrochemical advanced oxidation processes (EAOPs) as alternative treatment techniques for carwash wastewater reclamation. Chemosphere 211, (2018) 998-1006.
DOI: 10.1016/j.chemosphere.2018.08.044
Google Scholar
[55]
W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal of hazardous materials 243, (2012) 257-264.
DOI: 10.1016/j.jhazmat.2012.10.024
Google Scholar
[56]
M. El-Khateeb, Treatment of ink wastewater via heterogeneous photocatalytic oxidation. Desalination and water treatment 7(1), (2009)1-5.
DOI: 10.5004/dwt.2009.306
Google Scholar
[57]
H. Cheng, L. Mao, L. Wang, H. Hu, Y. Chen, Z. Gong, C. Wang, J. Chen, R. Li, Z. Zhu, Bidirectional regulation of zinc embedded titania nanorods: antibiosis and osteoblastic cell growth. RSC advances 5(19), (2015) 14470-14481.
DOI: 10.1039/c4ra17058j
Google Scholar
[58]
M. Yan, Z. Chen, N. Li, Y. Zhou, C. Zhang, G. Korshin, Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE). Water Research, 136: (2018) 104-111.
DOI: 10.1016/j.watres.2018.02.045
Google Scholar
[59]
S. M. Chuang, V. Ya, C. L. Feng, S. J. Lee, K. H. Choo, C. W. Li, Electrochemical Cr (VI) reduction using a sacrificial Fe anode: Impacts of solution chemistry and stoichiometry. Separation and Purification Technology 191, (2018) 167-172.
DOI: 10.1016/j.seppur.2017.09.028
Google Scholar
[60]
J. Zhan, Z. Li, G. Yu, X. Pan, J. Wang, W. Zhu, Y. Wang, Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes.Separation and Purification Technology 208, (2019) 12-18.
DOI: 10.1016/j.seppur.2018.06.030
Google Scholar
[61]
M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M. R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, (2015) 749-756.
DOI: 10.1016/j.cej.2014.09.035
Google Scholar
[62]
K. Bani-Melhema, M. Al-Shannagb, D. Alrousana, S. Al-Kofahic, Z. Al-Qodahd, M. R. Al-Kilania, Impact of soluble COD on grey water treatment by electrocoagulation technique. Desalination and Water Treatment 89, (2017) 101-110.
DOI: 10.5004/dwt.2017.21379
Google Scholar
[63]
M. K. Oden, H. Sari-Erkan, Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Safety and Environmental Protection 119, (2018) 207-217.
DOI: 10.1016/j.psep.2018.08.001
Google Scholar
[64]
A.N. Módenes, F.R. Espinoza-Quiñones, F. H. Borba, D. R. Manenti, Performance evaluation of an integrated photo-Fenton–Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chemical Engineering Journal, 197, (2012)1-9.
DOI: 10.1016/j.cej.2012.05.015
Google Scholar
[65]
E. M. Mostafa, A. F. Nazik, G. A. Abdelatty, Treatment of municipal wastewater by using Electro-coagulation at Gharbyia Governorate, Egypt. International Journal of Scientific and Engineering Research 9 (1), (2018) 1815-1820.
Google Scholar
[66]
M. El-Khateeb, E. S. H. Nashy, N. A. Ghany, A. M. Awad, Environmental impact elimination of chrome tanning effluent using electrocoagulation process assisted by chemical oxidation. Desalination and water treatment, 65, (2017) 147-152.
DOI: 10.5004/dwt.2017.20250
Google Scholar
[67]
Y. Feng, L. Yang, J. Liu, B.E. Logan, Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research and Technology 2(5), (2016) 800-831.
DOI: 10.1039/c5ew00289c
Google Scholar
[68]
E. G. Garrido-Ramírez, J. F. Marco, N. Escalona, M. S. Ureta-Zañartu, Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Microporous and Mesoporous Materials. 225, (2016) 303-311
DOI: 10.1016/j.micromeso.2016.01.013
Google Scholar
[69]
B. Hou, H. Han, S. Jia, H. Zhuang, P. Xu K. Li, Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst. Journal of the Taiwan Institute of Chemical Engineers 60, (2016) 352-360.
DOI: 10.1016/j.jtice.2015.10.032
Google Scholar
[70]
S. Şahinkaya, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry 1 Gernjak 9(2), (2013) 601-605.
DOI: 10.1016/j.jiec.2012.09.023
Google Scholar
[71]
E. Atmaca, Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials 163(1), (2009) 109-114.
DOI: 10.1016/j.jhazmat.2008.06.067
Google Scholar
[72]
Y. Zhang, Y. Wang, I. Angelidaki . Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in Bioelectro-Fenton system. Journal of Power Sources, 291, (2015)108-116.
DOI: 10.1016/j.jpowsour.2015.05.020
Google Scholar
[73]
W. Gernjak, M. I. Maldonado, S. Malato, J. Caceres, T. Krutzler, A. Glaser, R. Bauer, Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton. Solar Energy, 77(5), (2004) 567-572.
DOI: 10.1016/j.solener.2004.03.030
Google Scholar
[74]
C. Feng, C. C. Tsai, C. Y. Ma, C. P. Yu, C. H. Hou, Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chemical Engineering Journal 330, (2017) 1-10.
DOI: 10.1016/j.cej.2017.07.122
Google Scholar
[75]
V. G. Gude, Wastewater treatment in microbial fuel cells–an overview. Journal of cleaner production. 122, (2016) 287-307.
DOI: 10.1016/j.jclepro.2016.02.022
Google Scholar
[76]
Y. Zhou, D.Q. Zhang, M.T. Le, A.N. Puah, W. J. Ng, Energy utilization in sewage treatment–a review with comparisons. Journal of Water and Climate Change, 4(1): (2013)1-10.
DOI: 10.2166/wcc.2013.117
Google Scholar
[77]
A. Buthiyappan, A. A. A. Raman, Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production. 206, (2019)1025-1040.
DOI: 10.1016/j.jclepro.2018.09.234
Google Scholar