Advanced Treatment Technologies for Pollutants Removal in Wastewater

Article Preview

Abstract:

Conventional wastewater treatment technologies have been extensively studied for degrading organic matter, suspended solids, nutrient removal, and lowering microbial loads. They produce acceptable-quality effluent, but researchers have reported several limitations. Recently, advanced wastewater treatment technologies have preceded as an alternative to the degradation of recalcitrant wastes such as persistent organic compounds (POPs), pharmaceutically active compounds (PhACs), contaminants of emerging concern (CECs), and heavy metals (H.M). They can be physical, chemical, biological, or integration between one or more technologies. This is to meet the requirements for reuse for different purposes, minimize or prevent the negative impacts on the environment, and create new untraditional water resources to solve the water shortage problem. This article is a collected review of advanced wastewater treatment technologies. Also, the applications of these technologies with special concern for partially/hardly degradable pollutants from wastewater are indicated. They are eco-friendly, cost-effective, low-energy systems with a small footprint. Their selection depends on the characterization of wastewater, biodegradability, available footprint, quality of treated effluent required, cost, availability of funds, and personal skills.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-115

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.B. Akpor, G.O. Ohiobor, T.D. Olaolu, Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering 2(4), (2014), 37-43.

DOI: 10.11648/j.abb.20140204.11

Google Scholar

[2] G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters 17 (1), (2018), 145-155.

DOI: 10.1007/s10311-018-0785-9

Google Scholar

[3] P.S. Davies, The biological basis of wastewater treatment, Strathkelvin Instruments Ltd, 3. 2005.

Google Scholar

[4] H. I. Abdel-Shafy, M.A. El-Khateeb, M.S. Mansour, Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration. Water Science and Technology 74(3), (2016), 586-594.

DOI: 10.2166/wst.2016.234

Google Scholar

[5] S. I. Abou-Elela, M. E. Fawzy, M. M. El-Sorogy, S. A. Abo-El-Enein, Bio-immobilization of Cr (VI) and its impact on the performance of a pilot scale anaerobic sludge reactor treating municipal wastewater. Egyptian Journal of Chemistry 61(4), (2018), 629-637.

DOI: 10.21608/ejchem.2018.3849.1333

Google Scholar

[6] M.A. El-Bendary, M.E. Fawzy, M. Abdelraof, M. El-Sedik, M.A. Allam, Efficient malachite green biodegradation by Pseudomonas plecoglossicide MG2: process optimization, application in bioreactors, and degradation pathway. Microbial Cell Factories 22(1), (2023)192.

DOI: 10.1186/s12934-023-02194-z

Google Scholar

[7] L. Rizzo, S. Malato, D. Antakyali, V. G. Beretsou, M. B. Đolić, W. Gernjak, G. Mascolo, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment 655, (2018). 986-1008.

DOI: 10.1016/j.scitotenv.2018.11.265

Google Scholar

[8] P. Rajasulochana, V. Preethy. Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resource-Efficient Technologies, 2(4), (2016) 175-184.

DOI: 10.1016/j.reffit.2016.09.004

Google Scholar

[9] V. Marchal, R. Dellink, D. Van Vuuren, C. Clapp, J. Chateau, B. Magné, J. van Vliet, OECD environmental outlook to 2050. Organization for Economic Co-operation and Development 8, (2011) 397- 413.

DOI: 10.1787/env_outlook-2012-6-en

Google Scholar

[10] S. I. Abou‐Elela, M. E. Fawzy, S. A. El‐Shafai, Treatment of hazardous wastewater generated from metal finishing and electro‐coating industry via self‐coagulation: Case study. Water Environment Research, 93 (9), (2021). 1476-1486.

DOI: 10.1002/wer.1552

Google Scholar

[11] M. Gad, M.E. Fawzy, A. Z. Al-Herrawy, S. M. Abdo, N. Nabet, A. Hu, PacBio next-generation sequencing uncovers Apicomplexa diversity in different habitats. Scientific Reports 13(1), (2023) 15063.

DOI: 10.1038/s41598-023-40895-y

Google Scholar

[12] H.M. Ahmed, M.E. Fawzy, H.F. Nassar, Effective chemical coagulation treatment process for cationic and anionic dyes degradation. Egyptian Journal of Chemistry 65(8), (2022) 299-307.

DOI: 10.21608/ejchem.2022.109537.4993

Google Scholar

[13] M.S. Hellal, A. M. Rashad, K. K. Kadimpati, S. K. Attia, M. E. Fawzy, Adsorption characteristics of nickel (II) from aqueous solutions by Zeolite Scony Mobile-5 (ZSM-5) incorporated in sodium alginate beads. Scientific Reports, 13 (1), (2023) 19601.

DOI: 10.1038/s41598-023-45901-x

Google Scholar

[14] R.R.Z. Tarpani, A. Azapagic, Life cycle costs of advanced treatment techniques for wastewater reuse and resource recovery from sewage sludge. Journal of Cleaner Production, 204, (2018) 832-847.

DOI: 10.1016/j.jclepro.2018.08.300

Google Scholar

[15] G. Laera, M. N. Chong, B. Jin, A. Lopez, An integrated MBR–TiO2 photocatalysis process for the removal of Carbamazepine from simulated pharmaceutical industrial effluent. Bioresource technology 102(13), (2011) 7012-7015.

DOI: 10.1016/j.biortech.2011.04.056

Google Scholar

[16] E. Arche, G. M. Wolfaardt, J. H. Wyk Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA 43(4), (2017) 684-706.

DOI: 10.4314/wsa.v43i4.16

Google Scholar

[17] Z. Tigrine, H. Aburideh, M. Abbas, S. Hout, N. K. Merzouk, D. Zioui, M. Khateb, Membrane desalination technology in Algeria: reverse osmosis for coastal areas, In Energy for a Better Environment and Improved Sustainability 2, (2018) 197-218.

DOI: 10.1007/978-3-319-62575-1_15

Google Scholar

[18] B. Durham, Case studies of wastewater re-use for petrochemical, power and paper industry. In Membrane Technology in Water and Wastewater Treatment, (2000) 241-247.

DOI: 10.1039/9781847551351-00241

Google Scholar

[19] V. Buscio, M. J. Marín, M. Crespi, C. Gutiérrez-Bouzán, Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chemical Engineering Journal, 265, (2015) 122-128.

DOI: 10.1016/j.cej.2014.12.057

Google Scholar

[20] M. Vourch, B. Balannec, B. Chaufer, G. Dorange, Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 219 (1-3), (2008) 190-202.

DOI: 10.1016/j.desal.2007.05.013

Google Scholar

[21] C. M. Zhang, L. M. Xu, P. C. Xu, X. C. Wang, Elimination of viruses from domestic wastewater: requirements and technologies. World Journal of Microbiology and Biotechnology 32(4), (2016) 32-69.

DOI: 10.1007/s11274-016-2018-3

Google Scholar

[22] T. Liu, Z. L. Chen, W. Z. Yu, J. M. Shen, J. Gregory, Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water. Water Research, 45(14), (2011) 4260-4268.

DOI: 10.1016/j.watres.2011.05.037

Google Scholar

[23] E. Arkhangelsky, V. Gitis, Effect of transmembrane pressure on rejection of viruses by ultrafiltration membranes. Separation and Purification Technology 62(3), (2008) 619-628.

DOI: 10.1016/j.seppur.2008.03.013

Google Scholar

[24] M. Racar, D. Dolar, A. Špehar, K. Košutić, Application of UF/NF/RO membranes for treatment and reuse of rendering plant wastewater. Process Safety and Environmental Protection. 105, (2017) 386-392.

DOI: 10.1016/j.psep.2016.11.015

Google Scholar

[25] D. Falsanisi, L. Liberti, M. Notarnicola, Ultrafiltration (UF) pilot plant for municipal wastewater reuse in agriculture: impact of the operation mode on process performance. Water 2(4), (2010) 872-885.

DOI: 10.3390/w2040872

Google Scholar

[26] S. Gur-Reznik, I. Katz, C. G. Dosoretz, Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research. 42(6-7), (2008) 1595-1605.

DOI: 10.1016/j.watres.2007.10.004

Google Scholar

[27] I. Michael-Kordatou, C. Michael, X. Duan, X. He, D. D. Dionysiou, M. A. Mills, D. Fatta-Kassinos, Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications. Water Research 77, (2015) 213-248.

DOI: 10.1016/j.watres.2015.03.011

Google Scholar

[28] Y. Zheng, S. Yu, S. Shuai, Q. Zhou, Q. Cheng, M. Liu, C. Gao, Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 314, (2013) 89-95.

DOI: 10.1016/j.desal.2013.01.004

Google Scholar

[29] M. F. Abid, M. A. Zablouk, A. M. Abid-Alameer, Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian journal of environmental health science and engineering 9(1), (2012) 8-17.

DOI: 10.1186/1735-2746-9-17

Google Scholar

[30] N. Garcia, J. Moreno, E. Cartmell, I. Rodriguez-Roda, S. Judd, The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse. Environmental technology 34(24), (2013) 3183-3189.

DOI: 10.1080/09593330.2013.808244

Google Scholar

[31] M.E. Fawzy, I. Abdelfattah, M. E. Abuarab, E. Mostafa, K. M. Aboelghait, M. H. El-Awady, Sustainable approach for pharmaceutical wastewater treatment and reuse: case study. Journal of Environmental Science and Technology 11(4), (2018) 209 – 219.

DOI: 10.3923/jest.2018.209.219

Google Scholar

[32] S. I. Abou-Elela, M. E. Fawzy, W. Abdel-Halim, Packed bed up-flow anaerobic sludge blanket combined with multistage sand fine roughing filtration for municipal wastewater treatment and reuse. International Journal of Sustainable Development and Planning, 8(4), (2013) 549-562.

DOI: 10.2495/sdp-v8-n4-549-562

Google Scholar

[33] M. E. Fawzy, H. M. Ahmed, H. F. Nassar, Chicken bone ash as a cost-effective and efficient adsorbent for phenol removal from aqueous solution. Desalination and Water Treatment 281, (2023) 255-264.

DOI: 10.5004/dwt.2023.29141

Google Scholar

[34] H.M. Ahmed, N. A. Sobhy, M. E. Fawzy, Green Biosynthesis of Zinc Oxide Nanoparticles Utilizing Pomegranate Peel Extract for Grey Water Treatment. Solid State Phenomena, 342, (2023) 27-36.

DOI: 10.4028/p-575588

Google Scholar

[35] ECP 501/2015: Egyptian code of practice for the reuse of treated municipal wastewater for agricultural purposes, the Ministry of housing utilities and urban communities, 2015.

Google Scholar

[36] H. F. Nassar, M. E. Fawzy, Evaluation of Sand Filter as a Non-conventional Post Treatment of Oil Refinery Wastewater: Effect of Flow Rate. Egyptian Journal of Chemistry, 64(7), (2021) 3935-3942.

DOI: 10.21608/ejchem.2021.61387.3318

Google Scholar

[37] H. F. Nassar, H. M. Ahmed, M. E. Fawzy, Assessment, characterization, and separation of Alizarin red dye from aqueous solution using M-Fe layered double hydroxide. Desalination and Water Treatment 303, (2023) 193-199.

DOI: 10.5004/dwt.2023.29740

Google Scholar

[38] F. Gholami-Borujeni, K. Naddafi, F. Nejatzade-Barandozi, Application of catalytic ozonation in treatment of dye from aquatic solutions. Desalination and Water Treatment. 51(34-36), (2013) 6545-6551.

DOI: 10.1080/19443994.2013.769491

Google Scholar

[39] R. Mailler, J. Gasperi, Y. Coquet, S. Deshayes, S. Zedek, C. Cren-Olivé, N. Cartiser, V. Eudes, A. Bressy, E. Caupos, R. Moilleron, Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water research, 72, (2015) 315-330.

DOI: 10.1016/j.watres.2014.10.047

Google Scholar

[40] J. Altmann, F. Zietzschmann, E. L. Geiling, A. S. Ruhl, A. Sperlich, M. Jekel, Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater. Chemosphere 125, (2015) 198-204.

DOI: 10.1016/j.chemosphere.2014.12.061

Google Scholar

[41] L. Sbardella, J. Comas, A. Fenu, I. Rodriguez-Roda, M. Weemaes, Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater. Science of the Total Environment 636, (2018) 519-529.

DOI: 10.1016/j.scitotenv.2018.04.214

Google Scholar

[42] J.L. Wang, L. J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology. 42(3), (2012) 251-325.

DOI: 10.1080/10643389.2010.507698

Google Scholar

[43] Y. Deng, R, Zhao, Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports 1(3), (2015) 167-176.

DOI: 10.1007/s40726-015-0015-z

Google Scholar

[44] H. Zhou, D. W. Smith, Advanced technologies in water and wastewater treatment. Journal of Environmental Engineering and Science 1(4), (2002) 247-264.

Google Scholar

[45] M. Bourgin, B. Beck, M. Boehler, E. Borowska, J. Fleiner, E. Salhi, C. S. McArdell, Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Research, 129, (2018) 486-498.

DOI: 10.1016/j.watres.2017.10.036

Google Scholar

[46] P. Alfonso-Muniozguren, J. Lee, M. Bussemaker, R. Chadeesingh, C. Jones, D. Oakley, D. A. Saroj, Combined activated sludge-filtration-ozonation process for abattoir wastewater treatment. Journal of Water Process Engineering, 25, (2018) 157-163.

DOI: 10.1016/j.jwpe.2018.07.009

Google Scholar

[47] H. H. Jang, G. T. Seo, D. W. Jeong, Advanced oxidation processes and nanofiltration to reduce the color and chemical oxygen demand of waste soy sauce. Sustainability, 10(8), (2018) 2929.

DOI: 10.3390/su10082929

Google Scholar

[48] D. P. Minh, P. Gallezot, S. Azabou, S. Sayadi, M. Besson, Catalytic wet air oxidation of olive oil mill effluents: 4. Treatment and detoxification of real effluents, Applied Catalysis B: Environmental 84(3-4), (2008) 749-757.

DOI: 10.1016/j.apcatb.2008.06.013

Google Scholar

[49] A. Garg, A. Mishra, Degradation of organic pollutants by wet air oxidation using non noble metal-based catalysts. Journal of Hazardous, Toxic, and Radioactive Waste, 17(2), (2013) 89-96.

DOI: 10.1061/(asce)hz.2153-5515.0000152

Google Scholar

[50] C. Liu, X. X. Chen, J. Zhang, H. Z. Zhou, L. Zhang, Y. K. Guo, Advanced treatment of bio-treated coal chemical wastewater by a novel combination of micro bubble catalytic ozonation and biological process. Separation and Purification Technology 197, (2018) 295-301.

DOI: 10.1016/j.seppur.2018.01.005

Google Scholar

[51] V. Pawar, S. Gawande, An overview of the Fenton process for industrial wastewater. IOSR Journal of Mechanical and Civil Engineering, 2, (2015) 127-136.

Google Scholar

[52] S. Giannakis, I. Hendaoui, M. Jovic, D. Grandjean, L. F. De Alencastro, H. Girault, C, Pulgarin, Solar photo-Fenton and UV/H2O2 processes against the antidepressant Venlafaxine in urban wastewaters and human urine. Intermediates formation and biodegradability assessment. Chemical Engineering Journal, 308, (2017) 492-504.

DOI: 10.1016/j.cej.2016.09.084

Google Scholar

[53] L. G. Silva, F. C. Moreira, A. A. Souza, S. M. Souza, R. A. Boaventura, V. J. Vilar, Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry. Journal of Cleaner Production 198, (2018) 430-442.

DOI: 10.1016/j.jclepro.2018.07.001

Google Scholar

[54] S. O. Ganiyu, E. V. dos Santos, E. C. T. de Araújo Costa, C. A. Martínez-Huitle, Electrochemical advanced oxidation processes (EAOPs) as alternative treatment techniques for carwash wastewater reclamation. Chemosphere 211, (2018) 998-1006.

DOI: 10.1016/j.chemosphere.2018.08.044

Google Scholar

[55] W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal of hazardous materials 243, (2012) 257-264.

DOI: 10.1016/j.jhazmat.2012.10.024

Google Scholar

[56] M. El-Khateeb, Treatment of ink wastewater via heterogeneous photocatalytic oxidation. Desalination and water treatment 7(1), (2009)1-5.

DOI: 10.5004/dwt.2009.306

Google Scholar

[57] H. Cheng, L. Mao, L. Wang, H. Hu, Y. Chen, Z. Gong, C. Wang, J. Chen, R. Li, Z. Zhu, Bidirectional regulation of zinc embedded titania nanorods: antibiosis and osteoblastic cell growth. RSC advances 5(19), (2015) 14470-14481.

DOI: 10.1039/c4ra17058j

Google Scholar

[58] M. Yan, Z. Chen, N. Li, Y. Zhou, C. Zhang, G. Korshin, Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE). Water Research, 136: (2018) 104-111.

DOI: 10.1016/j.watres.2018.02.045

Google Scholar

[59] S. M. Chuang, V. Ya, C. L. Feng, S. J. Lee, K. H. Choo, C. W. Li, Electrochemical Cr (VI) reduction using a sacrificial Fe anode: Impacts of solution chemistry and stoichiometry. Separation and Purification Technology 191, (2018) 167-172.

DOI: 10.1016/j.seppur.2017.09.028

Google Scholar

[60] J. Zhan, Z. Li, G. Yu, X. Pan, J. Wang, W. Zhu, Y. Wang, Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes.Separation and Purification Technology 208, (2019) 12-18.

DOI: 10.1016/j.seppur.2018.06.030

Google Scholar

[61] M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M. R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, (2015) 749-756.

DOI: 10.1016/j.cej.2014.09.035

Google Scholar

[62] K. Bani-Melhema, M. Al-Shannagb, D. Alrousana, S. Al-Kofahic, Z. Al-Qodahd, M. R. Al-Kilania, Impact of soluble COD on grey water treatment by electrocoagulation technique. Desalination and Water Treatment 89, (2017) 101-110.

DOI: 10.5004/dwt.2017.21379

Google Scholar

[63] M. K. Oden, H. Sari-Erkan, Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Safety and Environmental Protection 119, (2018) 207-217.

DOI: 10.1016/j.psep.2018.08.001

Google Scholar

[64] A.N. Módenes, F.R. Espinoza-Quiñones, F. H. Borba, D. R. Manenti, Performance evaluation of an integrated photo-Fenton–Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chemical Engineering Journal, 197, (2012)1-9.

DOI: 10.1016/j.cej.2012.05.015

Google Scholar

[65] E. M. Mostafa, A. F. Nazik, G. A. Abdelatty, Treatment of municipal wastewater by using Electro-coagulation at Gharbyia Governorate, Egypt. International Journal of Scientific and Engineering Research 9 (1), (2018) 1815-1820.

Google Scholar

[66] M. El-Khateeb, E. S. H. Nashy, N. A. Ghany, A. M. Awad, Environmental impact elimination of chrome tanning effluent using electrocoagulation process assisted by chemical oxidation. Desalination and water treatment, 65, (2017) 147-152.

DOI: 10.5004/dwt.2017.20250

Google Scholar

[67] Y. Feng, L. Yang, J. Liu, B.E. Logan, Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research and Technology 2(5), (2016) 800-831.

DOI: 10.1039/c5ew00289c

Google Scholar

[68] E. G. Garrido-Ramírez, J. F. Marco, N. Escalona, M. S. Ureta-Zañartu, Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Microporous and Mesoporous Materials. 225, (2016) 303-311

DOI: 10.1016/j.micromeso.2016.01.013

Google Scholar

[69] B. Hou, H. Han, S. Jia, H. Zhuang, P. Xu K. Li, Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst. Journal of the Taiwan Institute of Chemical Engineers 60, (2016) 352-360.

DOI: 10.1016/j.jtice.2015.10.032

Google Scholar

[70] S. Şahinkaya, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry 1 Gernjak 9(2), (2013) 601-605.

DOI: 10.1016/j.jiec.2012.09.023

Google Scholar

[71] E. Atmaca, Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials 163(1), (2009) 109-114.

DOI: 10.1016/j.jhazmat.2008.06.067

Google Scholar

[72] Y. Zhang, Y. Wang, I. Angelidaki . Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in Bioelectro-Fenton system. Journal of Power Sources, 291, (2015)108-116.

DOI: 10.1016/j.jpowsour.2015.05.020

Google Scholar

[73] W. Gernjak, M. I. Maldonado, S. Malato, J. Caceres, T. Krutzler, A. Glaser, R. Bauer, Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton. Solar Energy, 77(5), (2004) 567-572.

DOI: 10.1016/j.solener.2004.03.030

Google Scholar

[74] C. Feng, C. C. Tsai, C. Y. Ma, C. P. Yu, C. H. Hou, Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chemical Engineering Journal 330, (2017) 1-10.

DOI: 10.1016/j.cej.2017.07.122

Google Scholar

[75] V. G. Gude, Wastewater treatment in microbial fuel cells–an overview. Journal of cleaner production. 122, (2016) 287-307.

DOI: 10.1016/j.jclepro.2016.02.022

Google Scholar

[76] Y. Zhou, D.Q. Zhang, M.T. Le, A.N. Puah, W. J. Ng, Energy utilization in sewage treatment–a review with comparisons. Journal of Water and Climate Change, 4(1): (2013)1-10.

DOI: 10.2166/wcc.2013.117

Google Scholar

[77] A. Buthiyappan, A. A. A. Raman, Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production. 206, (2019)1025-1040.

DOI: 10.1016/j.jclepro.2018.09.234

Google Scholar