Evaluating the Deicing Performance of Copper Sulfide Nanoparticle-Infused Transparent Photothermal Coatings on Glazing: An Integrative Experimental and Simulation Study

Article Preview

Abstract:

This study presents an efficient approach to fabricating photothermal coatings using copper sulfide (CuS) nanoparticles for effective deicing on glass. The influence of nanoparticle shape on light absorption was economically evaluated using Finite Different Time Domain (FDTD) simulations, identifying CuS nanorods as the optimal choice in terms of light absorption and heat generation. Simulation results guided the fabrication of transparent photothermal coatings incorporating CuS nanorods and transparent acrylic resin paint. Deicing tests under 808 nm illumination demonstrated efficient active deicing potential of the developed coating covered with a 3mm-thick ice layer, raising the surface temperature from-20.0 °C to 42.5 °C within 400s. This combined simulation guidance and test validation approach introduces a cost-effective method for designing high-performance deicing coatings embedded with photothermal nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-51

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Golovin, A. Dhyani, M.D. Thouless, A. Tuteja, Low-interfacial toughness materials for effective large-scale deicing, Science (80-. ). 364 (2019) 371–375.

DOI: 10.1126/science.aav1266

Google Scholar

[2] R. Tang, W. Jian, D. Lau, Transparent photothermal nanocomposite coating based on copper sulfide nanoparticles for photothermal deicing, in: Nondestruct. Charact. Monit. Adv. Mater. Aerospace, Civ. Infrastructure, Transp. XVII, SPIE, 2023: p.133–139.

DOI: 10.1117/12.2658075

Google Scholar

[3] C. Colipai, G. Southam, P. Oyarzún, D. González, V. Díaz, B. Contreras, I. Nancucheo, Synthesis of Copper Sulfide Nanoparticles Using Biogenic H2S Produced by a Low-pH Sulfidogenic Bioreactor, Miner. 2018, Vol. 8, Page 35. 8 (2018) 35.

DOI: 10.3390/MIN8020035

Google Scholar

[4] T. Hao, D. Wang, X. Chen, A. Jazzar, P. Shi, C. Li, H. Wang, X. He, Z. He, Photothermal strategies for ice accretion prevention and ice removal, Appl. Phys. Rev. 10 (2023).

DOI: 10.1063/5.0148288

Google Scholar

[5] A. Zhou, Z. Yu, C.L. Chow, D. Lau, Enhanced solar spectral reflectance of thermal coatings through inorganic additives, Energy Build. 138 (2017) 641–647.

DOI: 10.1016/J.ENBUILD.2016.12.027

Google Scholar

[6] Y. Zhai, M. Shim, Effects of Copper Precursor Reactivity on the Shape and Phase of Copper Sulfide Nanocrystals, Chem. Mater. 29 (2017) 2390–2397.

DOI: 10.1021/acs.chemmater.7b00461

Google Scholar

[7] Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D'Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, P.D. Cozzoli, Metallic-like stoichiometric copper sulfide nanocrystals: Phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling, ACS Nano. 7 (2013) 7352–7369.

DOI: 10.1021/nn403035s

Google Scholar

[8] M. Wang, T. Yang, G. Cao, X. Wang, Z. Jiang, C. Wang, Y. Li, Simulation-guided construction of solar thermal coating with enhanced light absorption capacity for effective icephobicity, Chem. Eng. J. 408 (2021) 127316.

DOI: 10.1016/j.cej.2020.127316

Google Scholar

[9] M. Kruszynska, H. Borchert, A. Bachmatiuk, M.H. Rümmeli, B. Büchner, J. Parisi, J. Kolny-Olesiak, Size and shape control of colloidal copper(I) sulfide nanorods, ACS Nano. 6 (2012) 5889–5896.

DOI: 10.1021/nn302448n

Google Scholar

[10] R. Lesyuk, E. Klein, I. Yaremchuk, C. Klinke, Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region, Nanoscale. 10 (2018) 20640–20651.

DOI: 10.1039/c8nr06738d

Google Scholar

[11] X. Li, H. Wang, H. Zhang, L. Yang, Comprehensive performance evaluation of Ti3C2 MXene/TiN composite nanofluids for photo thermal conversion, Appl. Therm. Eng. 228 (2023) 120486.

DOI: 10.1016/j.applthermaleng.2023.120486

Google Scholar

[12] Z. Xu, N. Rao, C.Y. Tang, C.H. Cheng, W.C. Law, Aqueous Phase Synthesis of Cu2-xS Nanostructures and Their Photothermal Generation Study, ACS Omega. 4 (2019) 14655–14662.

DOI: 10.1021/acsomega.9b02204

Google Scholar