Green Composite Concrete Incorporating with Non-Biodegradable Wastes

Article Preview

Abstract:

This research studied the properties of the green composite concrete for paving blocks comprised of the non-biodegradable wastes of PET bottle flake (15-35 wt%), metalized plastic film from food packaging (0-5 wt%), colored glass powder (5-15 wt%), and ground tire rubber (5-20 wt%) as low cost and ecofriendly reinforced materials. The various concentrations of those wastes in the concrete can be grouped into 14 compositions. The properties of the composite paving blocks were compared to those of standard concrete in terms of density moisture absorption, water absorption, and compressive strength. The results showed that the standard paving blocks had better properties than those of composite paving blocks. The combination of colored glass powder in the concrete can enhance all properties of the concrete block; moreover, the insertion of scrap tires can improve moisture absorption property. However, the addition of metalized plastic, and plastic bottle wastes induced the void inside the concrete decreasing the properties of the concrete.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-37

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. L. Law, N. Starr, T. R. Siegler, J. R. Jambeck, N. J. Mallos, and G. H. Leonard: Sci. Adv. Vol. 6 (2020), p. eabd0288

Google Scholar

[2] S. B. Borrelle, J. Ringma, K. L. Law, C. C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G. H. Leonard, M. A. Hilleary, M. Eriksen, H. P. Possingham, H. De Frond, L. R. Gerber, B. Polidoro, A. Tahir, M. Bernard, N. Mallos, M. Barnes, and C. M. Rochman: Science Vol. 369 (2020), p.1515–1518

DOI: 10.1126/science.aba3656

Google Scholar

[3] A. Milbrandt, K. Coney, A. Badgett, and G. T. Beckham: Resour. Conserv. Recycl. Vol. 183 (2022), p.106363

Google Scholar

[4] D. Ghernaout and N. Elboughdiri: Open Access Libr. J. Vol. 8 (2021)

Google Scholar

[5] M. T. Prasertwit and A. P. D. K. Kanchanasuntorn: NVEO - Nat. VOLATILES Essent. OILS J. NVEO (2021), p.8259–8268

DOI: 10.53555/nveo.v8i4

Google Scholar

[6] D. K. Le, R. I. H. Leung, A. S. R. Er, X. Zhang, X. J. Tay, Q. B. Thai, N. Phan-Thien, and H. M. Duong: Waste Manag. Vol. 100 (2019), p.296–305

DOI: 10.1016/j.wasman.2019.09.031

Google Scholar

[7] Y.-C. Jang, G. Lee, Y. Kwon, J. Lim, and J. Jeong: Resour. Conserv. Recycl. Vol. 158 (2020), p.104798

Google Scholar

[8] R. Geyer, J. R. Jambeck, and K. L. Law: Sci. Adv. Vol. 3 (2017), p. e1700782

Google Scholar

[9] Information on https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

Google Scholar

[10] S. Yin, R. Rajarao, B. Gong, Y. Wang, C. Kong, and V. Sahajwalla: J. Clean. Prod. Vol. 211 (2019), p.321–329

Google Scholar

[11] Information on http://infofile.pcd.go.th/mgt/PollutionReport2015_en.pdf

Google Scholar

[12] Information on https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/ containers-and-packaging-product-specific-data

Google Scholar

[13] Information on https://www.statista.com/statistics/

Google Scholar

[14] R.-U.-D. Nassar, P. Soroushian, and M. Sufyan-Ud-Din: Case Stud. Constr. Mater. Vol. 15 (2021), p. e00745

Google Scholar

[15] Q. Song, X. Zeng, J. Li, H. Duan, and W. Yuan: Environ. Sci. Pollut. Res. Vol. 22 (2015), p.12366–12373

Google Scholar

[16] D. Chen, H. Masui, H. Miyoshi, T. Akai, and T. Yazawa: Waste Manag. Vol. 26 (2006), p.1017

Google Scholar

[17] L. Liu, G. Cai, J. Zhang, X. Liu, and K. Liu: Renew. Sustain. Energy Rev. Vol. 126 (2020), p.109831

Google Scholar

[18] B. S. Thomas and R. C. Gupta: Renew. Sustain. Energy Rev. Vol. 54 (2016), p.1323–1333

Google Scholar

[19] Y.-W. Choi, D.-J. Moon, J.-S. Chung, and S.-K. Cho: Cem. Concr. Res. Vol. 35 (2005), p.776

Google Scholar

[20] N. B. Azmi, F. S. Khalid, J. M. Irwan, P. N. Mazenan, Z. Zahir, and S. Shahidan: IOP Conf. Ser. Earth Environ. Sci. Vol. 140 (2018), p.012129

DOI: 10.1088/1755-1315/140/1/012129

Google Scholar

[21] R. Harbi, R. Derabla, and Z. Nafa: Constr. Build. Mater. Vol. 152 (2017), p.632–641

Google Scholar

[22] M. Senanayake, A. Arulrajah, F. Maghool, and S. Horpibulsuk: Transp. Geotech. Vol. 34 (2022), p.100755

Google Scholar

[23] M. Sambucci and M. Valente: Materials Vol. 14 (2021)

Google Scholar

[24] A. C. Bhogayata and N. K. Arora: J. Mater. Cycles Waste Manag. Vol. 21 (2019), p.1014–1026

Google Scholar

[25] J. Thorneycroft, J. Orr, P. Savoikar, and R. J. Ball: Constr. Build. Mater. Vol. 161 (2018), p.63

Google Scholar

[26] Y. Li, S. Zhang, R. Wang, and F. Dang: Constr. Build. Mater. Vol. 225 (2019), p.1183–1201

Google Scholar

[27] K. Bisht and P. V. Ramana: Constr. Build. Mater., Vol. 155 (2017), p.811–817

Google Scholar

[28] G. Girskas and D. Nagrockienė: Constr. Build. Mater. Vol. 140 (2017), p.36–42

Google Scholar

[29] B. S. Mohammed and M. Adamu: Constr. Build. Mater. Vol. 159 (2017), p.234–251

Google Scholar

[30] N. Saikia and J. de Brito: Constr. Build. Mater. Vol. 52 (2013), p.236–244

Google Scholar

[31] C. Albano, N. Camacho, M. Hernández, A. Matheus, and A. Gutiérrez: Waste Manag. Vol. 29 (2009), p.2707–2716

Google Scholar

[32] M. Frigione: Waste Manag. Vol. 30 (2010), p.1101–1106

Google Scholar

[33] M. K. Ismail, A. A. A. Hassan, and A. A. Hussein: Mag. Concr. Res. Vol. 69 (2017)

Google Scholar

[34] G. Li, Z. Wang, C. K. Y. Leung, S. Tang, J. Pan, W. Huang, and E. Chen: J. Clean. Prod. Vol. 112 (2016), p.797–807

Google Scholar

[35] P. Turgut: Mater. Struct. Vol. 41 (2008), no. 5, p.805–813

Google Scholar