[1]
L. Iurlaro, M. Gherlone, and Di M. Sciuva: Bending And Free Vibration Analysis of Functionally Graded Sandwich Plates Using the Refined Zigzag Theory. Journal of Sandwich Structures and Materials, 16(6), 669–699, 2014.
DOI: 10.1177/1099636214548618
Google Scholar
[2]
M. Kashtalyan, and M. Menshykova: Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Composite Structures, 87(1), 36–43, 2009.
DOI: 10.1016/j.compstruct.2007.12.003
Google Scholar
[3]
B. Woodward, and M. Kashtalyan: 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings. International Journal of Mechanical Sciences, 53(10), 872–885, 2011.
DOI: 10.1016/j.ijmecsci.2011.07.011
Google Scholar
[4]
A. Garg, M-O Belarbi, H.D. Chalak and A. Chakrabarti: A review of the analysis of sandwich FGM structures. Composite Structures, 258, 113427, 2021.
DOI: 10.1016/j.compstruct.2020.113427
Google Scholar
[5]
M. G. Taj, A. Chakrabarti, and M. Talha: Bending analysis of functionally graded skew sandwich plates with through-the thickness displacement variations. In Journal of Sandwich Structures and Materials ,Vol. 16, 2014.
DOI: 10.1177/1099636213512499
Google Scholar
[6]
J. Yarasca, J. L. Mantari, and R. A. Arciniega: Hermite–Lagrangian finite element formulation to study functionally graded sandwich beams. Composite Structures, 140, 567–581, 2016.
DOI: 10.1016/j.compstruct.2016.01.015
Google Scholar
[7]
S.S. Tomar and M. Talha: Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates. Composites Part B: Engineering, 163, 779–793, 2019.
DOI: 10.1016/j.compositesb.2019.01.035
Google Scholar
[8]
S. Natarajan and G. Manickam: Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elements in Analysis and Design, 57, 32–42, 2012.
DOI: 10.1016/j.finel.2012.03.006
Google Scholar
[9]
A. Chakrabarti, H.D. Chalak, M. Ashraf and A. Hamid: A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core, Composite Structures, 93(2), 271-279, 2011.
DOI: 10.1016/j.compstruct.2010.08.031
Google Scholar
[10]
S. Brischetto: Classical and mixed advanced models for sandwich plates embedding functionally graded cores, Mechanics of Materials and Structures, Vol. No. 4(1), Page No. 13-33, 2009.
DOI: 10.2140/jomms.2009.4.13
Google Scholar
[11]
E. Carrera, S. Brischetto, M. Cinefra and M. Soave: Effects of thickness stretching in functionally graded plates and shells. Composites Part B, Vol. No. 42, Page No. 123–33, 2011.
DOI: 10.1016/j.compositesb.2010.10.005
Google Scholar
[12]
AMA Neves, AJM Ferreira, E Carrera, CMC Roque, M Cinefra and RMN Jorge: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Composites Part B, Vol. No. 43, Page No.711–25, 2012.
DOI: 10.1016/j.compositesb.2011.08.009
Google Scholar
[13]
AMA Neves, AJM Ferreira, E Carrera, M Cinefra, CMC Roque, RMN Jorge and CMM Soares: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, Vol. No. 44(1), Page No. 657–674, 2013.
DOI: 10.1016/j.compositesb.2012.01.089
Google Scholar