Sustainable Approaches for the Fabrication of Nanocellulose-Polyamide Membrane Based on Waste Date Palm Leaves for Water Treatment

Article Preview

Abstract:

A vast amount of agricultural waste, such as dried leaves, stems, pits, seeds, etc., are produced by date palm trees in Saudi Arabia each year. This waste is an excellent source of degradable biomass suitable for many uses. Crystalline nanocellulose (CNC) is one of the most important nanomaterials that can be used in various applications. Due to its unique properties, which include biorenewability, optical transparency, high mechanical strengths, and sustainability, nanocrystalline cellulose has become a significant nanomaterial in recent years. In this study, CNC was isolated from the waste date palm leaves and used for the production of PA-modified membranes for water treatment by reverse osmosis membrane technology. The membranes were prepared by surface polymerization with the polyamide as a selective layer on the polysulfone support film. Three membranes were produced, two with 0.01% and 0.02% (w/v) CNC and the third with PA-free CNC for comparison. Each membrane produced was tested using different characterization techniques. The polyamide membrane with 0.01% w/v CNC had a higher water permeability of 43.25 L/m2 h bar than the membranes with 0% w/v CNC (36.25 L/m2 h) and 0.02% w/v CNC (42.85 L/m2 h bar). Under the same conditions, salt retention was also found to be above 98% for both NaCl and MgSO4 for the two modified membranes. The contact angle was found to be 68.04±3.7, 72.83±0.8, and 63.76±5.5 for PA(0%CNC), PA-CNC (0.01% w/v), and PA-CNC (0.02% w/v), respectively. The 0.01% PA-CNC membrane exhibited a higher water contact angle, greater hydrophobicity and lower surface roughness. As a result, the isolated CNC might be appropriate for use as a modifier agent for membrane fabrication and water treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-74

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Uralovich, K.S., Toshmamatovich, T.U., Kubayevich, K.F., Sapaev, I.B., Saylaubaevna, S.S., Beknazarova, Z.F. and Khurramov, A.: A primary factor in sustainable development and environmental sustainability is environmental education. Caspian J. Environ. Sci. 21(4), 965-975 (2023).

Google Scholar

[2] Mishra, R.K.: Fresh water availability and its global challenge. British J. Multidiscip. Adv. Studies 4(3), 1-78 (2023)

DOI: 10.37745/bjmas.2022.0208

Google Scholar

[3] Mumtaz, T., Cheema, A.T.: Causes and Effects of Water and Environmental Pollution: A Way Forward. J. Pol. Stud. 30, 83 (2023).

Google Scholar

[4] Soomro, A.H., Marri, A. and Shaikh, N.: Date Palm (Phoenix dactylifera): A Review of Economic Potential, Industrial Valorization, Nutritional and Health Significance. Neglected Plant Foods Of South Asia: Exploring and valorizing nature to feed hunger, 319-350 (2023)

DOI: 10.1007/978-3-031-37077-9_13

Google Scholar

[5] Alotaibi, K.D., Alharbi, H.A., Yaish, M.W., Ahmed, I., Alharbi, S.A., Alotaibi, F., Kuzyakov, Y.: Date palm cultivation: A review of soil and environmental conditions and future challenges. Land Deg. Dev. 34(9), 2431-2444 (2023)

DOI: 10.1002/ldr.4619

Google Scholar

[6] Al-Awa, Z.F.A., Sangor, F.I.M.S., Babili, S.B., Saud, A., Saleem, H. Zaidi, S.J.: Effect of Leaf Powdering Technique on the Characteristics of Date Palm-Derived Cellulose. ACS Omega. (2023)

DOI: 10.1021/acsomega.3c01222

Google Scholar

[7] Aral, B.: Turkey's Voting Preferences in the UN General Assembly During the AK Party Era as a Counterchallenge to Its 'New'Foreign Policy. J. Balkan Near East. Stud. 25(3), 399-439 (2023)

DOI: 10.1080/19448953.2022.2143852

Google Scholar

[8] Sebastian, J.K., Nagella, P., Mukherjee, E., Dandin, V.S., Naik, P.M., Jain, S.M., Al-Khayri, J.M. Johnson, D.V.: Date Palm: Genomic Designing for Improved Nutritional Quality. ICompend. Crop Genome Design. Nutraceut. 1-64 (2023). Singapore: Springer Nature Singapore

DOI: 10.1007/978-981-19-3627-2_43-1

Google Scholar

[9] Al-Mohamed, R., Majar, A., Fahed, K., Dagar, J.C. Sileshi, G.W.: Agroforestry for Plant Diversity and Livelihood Security in Southwest Asia. Agro. Sustain. Inten. Agr. Asia Afr. 387-428, (2023). Singapore: Springer Nature Singapore

DOI: 10.1007/978-981-19-4602-8_13

Google Scholar

[10] Anvari, S., Aguado, R., Jurado, F., Fendri, M., Zaier, H., Larbi, A. Vera, D., 2024. Analysis of agricultural waste/byproduct biomass potential for bioenergy: The case of Tunisia. Energy Sustain. Dev. 78,101367 (2024)

DOI: 10.1016/j.esd.2023.101367

Google Scholar

[11] Rodríguez-Espinosa, T., Papamichael, I., Voukkali, I., Gimeno, A.P., Candel, M.B.A., Navarro-Pedreño, J., Zorpas, A.A. Lucas, I.G.: Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 876,162666 (2023)

DOI: 10.1016/j.scitotenv.2023.162666

Google Scholar

[12] Raza, M., Abu-Jdayil, B., Banat, F. and Al-Marzouqi, A.H., 2022. Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega, 7(29), pp.25366-25379

DOI: 10.1021/acsomega.2c02333

Google Scholar

[13] Raza, M., Abu-Jdayil, B., Banat, F. and Al-Marzouqi, A.H., 2022. Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega, 7(29), pp.25366-25379

DOI: 10.1021/acsomega.2c02333

Google Scholar

[14] Saud, A., Saleem, H., Khan, A.W., Munira, N., Khan, M. and Zaidi, S.J., 2023. Date Palm Tree Leaf-Derived Cellulose Nanocrystal Incorporated Thin-Film Composite forward Osmosis Membranes for Produced Water Treatment. Membranes, 13(5), p.513

DOI: 10.3390/membranes13050513

Google Scholar

[15] Gelaw, B.B., Kasaew, E., Belayneh, A., Tesfaw, D. and Tesfaye, T., 2023. Review of the sources, synthesis, and applications of nanocellulose materials. Polymer Bulletin, pp.1-23

DOI: 10.1007/s00289-023-05061-4

Google Scholar

[16] Hashem, A.H., El-Naggar, M.E., Abdelaziz, A.M., Abdelbary, S., Hassan, Y.R. and Hasanin, M.S., 2023. Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. International Journal of Biological Macromolecules, 249, p.126011

DOI: 10.1016/j.ijbiomac.2023.126011

Google Scholar

[17] Debnath, B., Haldar, D. and Purkait, M.K., 2021. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydrate polymers, 273, p.118537

DOI: 10.1016/j.carbpol.2021.118537

Google Scholar

[18] Sharma, S., Sharma, V., Chatterjee, S. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment-A review. Sci. Total Environ. 875,162627 (2023)

DOI: 10.1016/j.scitotenv.2023.162627

Google Scholar

[19] Khoshnodifar, Z., Ataei, P. Karimi, H.: Recycling date palm waste for compost production: A study of sustainability behavior of date palm growers. Environ. Sustain. Ind. 20, 100300 (2023)

DOI: 10.1016/j.indic.2023.100300

Google Scholar

[20] Padha, B., Verma, S., Ahmed, A., Chavhan, M.P., Mahajan, P. Arya, S. From Trash to Treasure: Crafting electrochemical supercapacitors with recycled waste materials. Progress Energy (2023). https://doi

DOI: 10.1088/2516-1083/ad139c

Google Scholar

[21] Di Fraia, S., Sharmila, V.G., Banu, J.R. Massarotti, N. A comprehensive review on upscaling of food waste into value added products towards a circular economy: Holistic approaches and life cycle assessments. Trends Food Sci. Technol. 104288 (2023)

DOI: 10.1016/j.tifs.2023.104288

Google Scholar

[22] Boughezal, A., Ben Mya, O., Lanez, T. Fethiza Tedjani, C.: Extraction of pure cellulose from palm residues using alkaline treatment method and its performance in PVC polymer matrix composite. Biomass Conv. Bioref. 1-10 (2023)

DOI: 10.1007/s13399-023-04927-x

Google Scholar

[23] Ivbanikaro, A.E., Okonkwo, J.O., Sadiku, E.R. Maepa, C.E.: Recent development in the formation and surface modification of cellulose-bead nanocomposites as adsorbents for water purification: a comprehensive review. J. Polym. Eng. 43(8), 680-714 (2023)

DOI: 10.1515/polyeng-2023-0056

Google Scholar

[24] Sadare, O.O., Yoro, K.O., Moothi, K. Daramola, M.O.: Lignocellulosic biomass-derived nanocellulose crystals as fillers in membranes for water and wastewater treatment: a review. Membranes, 12(3), 320 (2022)

DOI: 10.3390/membranes12030320

Google Scholar

[25] Kian, L.K., Fouad, H., Jawaid, M. Karim, Z.: Crystalline nanocellulose based sustainable nanoscopic composite membrane production: removal of metal ions from water. Cellulose, 29(7), 3803-3816 (2022)

DOI: 10.1007/s10570-022-04494-w

Google Scholar

[26] Liu, Y., Liu, H. Shen, Z.: Nanocellulose based filtration membrane in industrial waste water treatment: A review. Materials, 14(18), 5398 (2021)

DOI: 10.3390/ma14185398

Google Scholar

[27] Salama, A., Abouzeid, R., Leong, W.S., Jeevanandam, J., Samyn, P., Dufresne, A., Bechelany, M. Barhoum, A.: Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials, 11(11), 3008 (2021)

DOI: 10.3390/nano11113008

Google Scholar

[28] Adegoke, K.A., Giwa, S.O., Adegoke, O.R. Maxakato, N.W.: Bibliometric evaluation of nanoadsorbents for wastewater treatment and way forward in nanotechnology for clean water sustainability. Sci. Afr. 21, e01753 (2023)

DOI: 10.1016/j.sciaf.2023.e01753

Google Scholar

[29] Davoodbeygi, Y., Askari, M., Salehi, E. Kheirieh, S.: A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. J. Environ. Manag. 335, 117577 (2023)

DOI: 10.1016/j.jenvman.2023.117577

Google Scholar

[30] Demoulin, C., Dahdouh, L., Ricci, J., Ruiz, E., Delalonde, M. Wisniewski, C.: Synergistic effect of particle size, shear rate and driving-force during microfiltration of fruit juices: Toward a relevant choice of pretreatments and filtration conditions. Innov. Food Sci. Emerg. Technol. 84, 103247 (2023)

DOI: 10.1016/j.ifset.2022.103247

Google Scholar

[31] Tang, Q., An, X., Lan, H., Liu, H. Qu, J.: A homogeneous carbon nitride nanomodifier for promoting the water permeation of polyamide desalination membranes. Separation and Purification Technology, 127082 (2024)

DOI: 10.1016/j.seppur.2024.127082

Google Scholar

[32] Dai, B., Hu, Y., Ding, Y., Shen, L., Li, R., Zhao, D., Jiao, Y., Xu, Y., Lin, H. Innovative construction of nano-wrinkled polyamide membranes using covalent organic framework nanoflowers for efficient desalination and antibiotic removal. Desalination, 570, 117083 (2024)

DOI: 10.1016/j.desal.2023.117083

Google Scholar

[33] Liu, S., Yang, F., Zhou, J., Peng, Y., Wang, E., Song, J., Su, B.: Construction of highly permeable organic solvent nanofiltration membrane via β-cyclodextrin assisted interfacial polymerization. J. Membrane Sci. 687, 22052 (2023)

DOI: 10.1016/j.memsci.2023.122052

Google Scholar

[34] Al-Awa, Z.F.A., Sangor, F.I.M.S., Babili, S.B., Saud, A., Saleem, H. and Zaidi, S.J.: Effect of leaf powdering technique on the characteristics of date palm-derived cellulose. ACS omega, 8(21),18930-18939 (2023)

DOI: 10.1021/acsomega.3c01222

Google Scholar

[35] Alhamzani, A.G. and Habib, M.A., 2021. preparation of cellulose nanocrystals from date palm tree leaflets (phoenix dactylifera l.) Via repeated chemical treatments. Cellul. Chem. Technol, 55, 33-39 (2021).

DOI: 10.35812/cellulosechemtechnol.2021.55.04

Google Scholar

[36] Huang, K., Maltais, A., Wang, Y.: Enhancing water resistance of regenerated cellulose films with organosilanes and cellulose nanocrystals for food packaging. Carbohyd. Polym Technol. Appl. 6,100391 (2023)

DOI: 10.1016/j.carpta.2023.100391

Google Scholar

[37] Benhamou, A.A., Kassab, Z., Boussetta, A., Salim, M.H., Ablouh, E.H., Nadifiyine, M., Moubarik, A., El Achaby, M.: Beneficiation of cactus fruit waste seeds for the production of ellulose nanostructures: extraction and properties. Int. J. Biol. Macromol. 203, 302-311 (2022)

DOI: 10.1016/j.ijbiomac.2022.01.163

Google Scholar

[38] D'Acierno, F., Hamad, W.Y., Michal, C.A. and MacLachlan, M.J.: Thermal degradation of cellulose filaments and nanocrystals. Biomacromolecules 21(8),3374-3386 (2020)

DOI: 10.1021/acs.biomac.0c00805

Google Scholar

[39] Shojaeiarani, J., Bajwa, D.S., Chanda, S.: Cellulose nanocrystal based composites: A review. Composites Part C: Open Access, 5,100164 (2021)

DOI: 10.1016/j.jcomc.2021.100164

Google Scholar

[40] Ramos, P.Z., Call, C.C., Simitz, L.V., Richards, J.J.: Evaluating the rheo-electric performance of aqueous suspensions of oxidized carbon black. J. Coll. Inter. Sci 634, 379-387(2023)

DOI: 10.1016/j.jcis.2022.12.017

Google Scholar

[41] Li, J.B., Zhu, C.Y., Guo, B.B., Liu, C., Xin, J.H., Zhang, C., Wu, J., Zhang, L., Yang, H.C., Xu, Z.K.: Ultrahigh-permeance polyamide thin-film composite membranes enabled by interfacial polymerization on a macro-porous substrate toward organic solvent nanofiltration. J. Membrane Sci. 122342 (2023)

DOI: 10.1016/j.memsci.2023.122342

Google Scholar

[42] Raza, M., Abu-Jdayil, B., Banat, F. and Al-Marzouqi, A.H.: Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega, 7(29), 25366-25379 (2022).

DOI: 10.1021/acsomega.2c02333

Google Scholar

[43] Pouresmaeel-Selkjani, P., Jahanshahi, M., amp; Peyravi, M.: Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Performance Polymers, 29(7), 759-771 (2017).

DOI: 10.1177/0954008316656742

Google Scholar

[44] Ismail, N. M., Jakariah, N. R., Bolong, N., Anissuzaman, S. M., Nordin, N. A. H. M., & Razali, A. R.: Effect of polymer concentration on the morphology and mechanical properties of asymmetric polysulfone (PSf) membrane. Journal of Applied Membrane Science & Technology, 21(1), (2017).

DOI: 10.11113/amst.v21i1.107

Google Scholar

[45] Yang, X., Liu, H., Zhao, Y., amp; Liu, L.: Preparation and characterization of polysulfone membrane incorporating cellulose nanocrystals extracted from corn husks. Fibers and Polymers, 17, 1820-1828 (2016).

DOI: 10.1007/s12221-016-6762-7

Google Scholar

[46] Masese, F.K., Njenga, P.K., Ndaya, D.M. and Kasi, R.M., 2023. Recent Advances and Opportunities for Cellulose Nanocrystal-Based Liquid Crystalline Polymer Hybrids and Composite Materials. Macromolecules, 56(17), pp.6567-6588

DOI: 10.1021/acs.macromol.3c00369

Google Scholar

[47] Hynninen, V., Patrakka, J. Nonappa: Methylcellulose–cellulose nanocrystal composites for optomechanically tunable hydrogels and fibers. Materials, 14(18), 5137 (2021)

DOI: 10.3390/ma14185137

Google Scholar

[48] Li, J.B., Zhu, C.Y., Guo, B.B., Liu, C., Xin, J.H., Zhang, C., Wu, J., Zhang, L., Yang, H.C., Xu, Z.K.: Ultrahigh-permeance polyamide thin-film composite membranes enabled by interfacial polymerization on a macro-porous substrate toward organic solvent nanofiltration. J. Membrane Sci. 122342 (2023)

DOI: 10.1016/j.memsci.2023.122342

Google Scholar

[49] Abedi, F.: Thin Film Nanocomposite Membranes Using Cellulose Nanocrystals for Water Treatment (Doctoral dissertation, Université d'Ottawa/University of Ottawa) (2023). http://hdl.handle.net/10393/45239

Google Scholar

[50] Cheng, X., Zhang, Y., Shao, S., Lai, C., Wu, D., Xu, J., Luo, X., Xu, D., Liang, H., Zhu, X.: Highly permeable positively charged nanofiltration membranes with multilayer structures for multiple heavy metal removals. Desalination 548, 116266 (2023)

DOI: 10.1016/j.desal.2022.116266

Google Scholar

[51] Hurwitz, G., Guillen, G.R., Hoek, E.M. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Memb. Sci. 349, 349–357 (2010).

DOI: 10.1016/j.memsci.2009.11.063

Google Scholar

[52] Yan, W., Wang, Z., Wu, J., Zhao, S., Wang, J., Wang, S.: Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. J. Memb. Sci. 498, 227–241 (2016).

DOI: 10.1016/j.memsci.2015.10.029

Google Scholar

[53] Wang, J., Xu, R., Yang, F., Kang, J., Cao, Y., Xiang, M.: Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J. Memb. Sci. 556, 374–383 (2018).

DOI: 10.1016/j.memsci.2018.04.011

Google Scholar