[1]
Uralovich, K.S., Toshmamatovich, T.U., Kubayevich, K.F., Sapaev, I.B., Saylaubaevna, S.S., Beknazarova, Z.F. and Khurramov, A.: A primary factor in sustainable development and environmental sustainability is environmental education. Caspian J. Environ. Sci. 21(4), 965-975 (2023).
Google Scholar
[2]
Mishra, R.K.: Fresh water availability and its global challenge. British J. Multidiscip. Adv. Studies 4(3), 1-78 (2023)
DOI: 10.37745/bjmas.2022.0208
Google Scholar
[3]
Mumtaz, T., Cheema, A.T.: Causes and Effects of Water and Environmental Pollution: A Way Forward. J. Pol. Stud. 30, 83 (2023).
Google Scholar
[4]
Soomro, A.H., Marri, A. and Shaikh, N.: Date Palm (Phoenix dactylifera): A Review of Economic Potential, Industrial Valorization, Nutritional and Health Significance. Neglected Plant Foods Of South Asia: Exploring and valorizing nature to feed hunger, 319-350 (2023)
DOI: 10.1007/978-3-031-37077-9_13
Google Scholar
[5]
Alotaibi, K.D., Alharbi, H.A., Yaish, M.W., Ahmed, I., Alharbi, S.A., Alotaibi, F., Kuzyakov, Y.: Date palm cultivation: A review of soil and environmental conditions and future challenges. Land Deg. Dev. 34(9), 2431-2444 (2023)
DOI: 10.1002/ldr.4619
Google Scholar
[6]
Al-Awa, Z.F.A., Sangor, F.I.M.S., Babili, S.B., Saud, A., Saleem, H. Zaidi, S.J.: Effect of Leaf Powdering Technique on the Characteristics of Date Palm-Derived Cellulose. ACS Omega. (2023)
DOI: 10.1021/acsomega.3c01222
Google Scholar
[7]
Aral, B.: Turkey's Voting Preferences in the UN General Assembly During the AK Party Era as a Counterchallenge to Its 'New'Foreign Policy. J. Balkan Near East. Stud. 25(3), 399-439 (2023)
DOI: 10.1080/19448953.2022.2143852
Google Scholar
[8]
Sebastian, J.K., Nagella, P., Mukherjee, E., Dandin, V.S., Naik, P.M., Jain, S.M., Al-Khayri, J.M. Johnson, D.V.: Date Palm: Genomic Designing for Improved Nutritional Quality. ICompend. Crop Genome Design. Nutraceut. 1-64 (2023). Singapore: Springer Nature Singapore
DOI: 10.1007/978-981-19-3627-2_43-1
Google Scholar
[9]
Al-Mohamed, R., Majar, A., Fahed, K., Dagar, J.C. Sileshi, G.W.: Agroforestry for Plant Diversity and Livelihood Security in Southwest Asia. Agro. Sustain. Inten. Agr. Asia Afr. 387-428, (2023). Singapore: Springer Nature Singapore
DOI: 10.1007/978-981-19-4602-8_13
Google Scholar
[10]
Anvari, S., Aguado, R., Jurado, F., Fendri, M., Zaier, H., Larbi, A. Vera, D., 2024. Analysis of agricultural waste/byproduct biomass potential for bioenergy: The case of Tunisia. Energy Sustain. Dev. 78,101367 (2024)
DOI: 10.1016/j.esd.2023.101367
Google Scholar
[11]
Rodríguez-Espinosa, T., Papamichael, I., Voukkali, I., Gimeno, A.P., Candel, M.B.A., Navarro-Pedreño, J., Zorpas, A.A. Lucas, I.G.: Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 876,162666 (2023)
DOI: 10.1016/j.scitotenv.2023.162666
Google Scholar
[12]
Raza, M., Abu-Jdayil, B., Banat, F. and Al-Marzouqi, A.H., 2022. Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega, 7(29), pp.25366-25379
DOI: 10.1021/acsomega.2c02333
Google Scholar
[13]
Raza, M., Abu-Jdayil, B., Banat, F. and Al-Marzouqi, A.H., 2022. Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega, 7(29), pp.25366-25379
DOI: 10.1021/acsomega.2c02333
Google Scholar
[14]
Saud, A., Saleem, H., Khan, A.W., Munira, N., Khan, M. and Zaidi, S.J., 2023. Date Palm Tree Leaf-Derived Cellulose Nanocrystal Incorporated Thin-Film Composite forward Osmosis Membranes for Produced Water Treatment. Membranes, 13(5), p.513
DOI: 10.3390/membranes13050513
Google Scholar
[15]
Gelaw, B.B., Kasaew, E., Belayneh, A., Tesfaw, D. and Tesfaye, T., 2023. Review of the sources, synthesis, and applications of nanocellulose materials. Polymer Bulletin, pp.1-23
DOI: 10.1007/s00289-023-05061-4
Google Scholar
[16]
Hashem, A.H., El-Naggar, M.E., Abdelaziz, A.M., Abdelbary, S., Hassan, Y.R. and Hasanin, M.S., 2023. Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. International Journal of Biological Macromolecules, 249, p.126011
DOI: 10.1016/j.ijbiomac.2023.126011
Google Scholar
[17]
Debnath, B., Haldar, D. and Purkait, M.K., 2021. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydrate polymers, 273, p.118537
DOI: 10.1016/j.carbpol.2021.118537
Google Scholar
[18]
Sharma, S., Sharma, V., Chatterjee, S. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment-A review. Sci. Total Environ. 875,162627 (2023)
DOI: 10.1016/j.scitotenv.2023.162627
Google Scholar
[19]
Khoshnodifar, Z., Ataei, P. Karimi, H.: Recycling date palm waste for compost production: A study of sustainability behavior of date palm growers. Environ. Sustain. Ind. 20, 100300 (2023)
DOI: 10.1016/j.indic.2023.100300
Google Scholar
[20]
Padha, B., Verma, S., Ahmed, A., Chavhan, M.P., Mahajan, P. Arya, S. From Trash to Treasure: Crafting electrochemical supercapacitors with recycled waste materials. Progress Energy (2023). https://doi
DOI: 10.1088/2516-1083/ad139c
Google Scholar
[21]
Di Fraia, S., Sharmila, V.G., Banu, J.R. Massarotti, N. A comprehensive review on upscaling of food waste into value added products towards a circular economy: Holistic approaches and life cycle assessments. Trends Food Sci. Technol. 104288 (2023)
DOI: 10.1016/j.tifs.2023.104288
Google Scholar
[22]
Boughezal, A., Ben Mya, O., Lanez, T. Fethiza Tedjani, C.: Extraction of pure cellulose from palm residues using alkaline treatment method and its performance in PVC polymer matrix composite. Biomass Conv. Bioref. 1-10 (2023)
DOI: 10.1007/s13399-023-04927-x
Google Scholar
[23]
Ivbanikaro, A.E., Okonkwo, J.O., Sadiku, E.R. Maepa, C.E.: Recent development in the formation and surface modification of cellulose-bead nanocomposites as adsorbents for water purification: a comprehensive review. J. Polym. Eng. 43(8), 680-714 (2023)
DOI: 10.1515/polyeng-2023-0056
Google Scholar
[24]
Sadare, O.O., Yoro, K.O., Moothi, K. Daramola, M.O.: Lignocellulosic biomass-derived nanocellulose crystals as fillers in membranes for water and wastewater treatment: a review. Membranes, 12(3), 320 (2022)
DOI: 10.3390/membranes12030320
Google Scholar
[25]
Kian, L.K., Fouad, H., Jawaid, M. Karim, Z.: Crystalline nanocellulose based sustainable nanoscopic composite membrane production: removal of metal ions from water. Cellulose, 29(7), 3803-3816 (2022)
DOI: 10.1007/s10570-022-04494-w
Google Scholar
[26]
Liu, Y., Liu, H. Shen, Z.: Nanocellulose based filtration membrane in industrial waste water treatment: A review. Materials, 14(18), 5398 (2021)
DOI: 10.3390/ma14185398
Google Scholar
[27]
Salama, A., Abouzeid, R., Leong, W.S., Jeevanandam, J., Samyn, P., Dufresne, A., Bechelany, M. Barhoum, A.: Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials, 11(11), 3008 (2021)
DOI: 10.3390/nano11113008
Google Scholar
[28]
Adegoke, K.A., Giwa, S.O., Adegoke, O.R. Maxakato, N.W.: Bibliometric evaluation of nanoadsorbents for wastewater treatment and way forward in nanotechnology for clean water sustainability. Sci. Afr. 21, e01753 (2023)
DOI: 10.1016/j.sciaf.2023.e01753
Google Scholar
[29]
Davoodbeygi, Y., Askari, M., Salehi, E. Kheirieh, S.: A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. J. Environ. Manag. 335, 117577 (2023)
DOI: 10.1016/j.jenvman.2023.117577
Google Scholar
[30]
Demoulin, C., Dahdouh, L., Ricci, J., Ruiz, E., Delalonde, M. Wisniewski, C.: Synergistic effect of particle size, shear rate and driving-force during microfiltration of fruit juices: Toward a relevant choice of pretreatments and filtration conditions. Innov. Food Sci. Emerg. Technol. 84, 103247 (2023)
DOI: 10.1016/j.ifset.2022.103247
Google Scholar
[31]
Tang, Q., An, X., Lan, H., Liu, H. Qu, J.: A homogeneous carbon nitride nanomodifier for promoting the water permeation of polyamide desalination membranes. Separation and Purification Technology, 127082 (2024)
DOI: 10.1016/j.seppur.2024.127082
Google Scholar
[32]
Dai, B., Hu, Y., Ding, Y., Shen, L., Li, R., Zhao, D., Jiao, Y., Xu, Y., Lin, H. Innovative construction of nano-wrinkled polyamide membranes using covalent organic framework nanoflowers for efficient desalination and antibiotic removal. Desalination, 570, 117083 (2024)
DOI: 10.1016/j.desal.2023.117083
Google Scholar
[33]
Liu, S., Yang, F., Zhou, J., Peng, Y., Wang, E., Song, J., Su, B.: Construction of highly permeable organic solvent nanofiltration membrane via β-cyclodextrin assisted interfacial polymerization. J. Membrane Sci. 687, 22052 (2023)
DOI: 10.1016/j.memsci.2023.122052
Google Scholar
[34]
Al-Awa, Z.F.A., Sangor, F.I.M.S., Babili, S.B., Saud, A., Saleem, H. and Zaidi, S.J.: Effect of leaf powdering technique on the characteristics of date palm-derived cellulose. ACS omega, 8(21),18930-18939 (2023)
DOI: 10.1021/acsomega.3c01222
Google Scholar
[35]
Alhamzani, A.G. and Habib, M.A., 2021. preparation of cellulose nanocrystals from date palm tree leaflets (phoenix dactylifera l.) Via repeated chemical treatments. Cellul. Chem. Technol, 55, 33-39 (2021).
DOI: 10.35812/cellulosechemtechnol.2021.55.04
Google Scholar
[36]
Huang, K., Maltais, A., Wang, Y.: Enhancing water resistance of regenerated cellulose films with organosilanes and cellulose nanocrystals for food packaging. Carbohyd. Polym Technol. Appl. 6,100391 (2023)
DOI: 10.1016/j.carpta.2023.100391
Google Scholar
[37]
Benhamou, A.A., Kassab, Z., Boussetta, A., Salim, M.H., Ablouh, E.H., Nadifiyine, M., Moubarik, A., El Achaby, M.: Beneficiation of cactus fruit waste seeds for the production of ellulose nanostructures: extraction and properties. Int. J. Biol. Macromol. 203, 302-311 (2022)
DOI: 10.1016/j.ijbiomac.2022.01.163
Google Scholar
[38]
D'Acierno, F., Hamad, W.Y., Michal, C.A. and MacLachlan, M.J.: Thermal degradation of cellulose filaments and nanocrystals. Biomacromolecules 21(8),3374-3386 (2020)
DOI: 10.1021/acs.biomac.0c00805
Google Scholar
[39]
Shojaeiarani, J., Bajwa, D.S., Chanda, S.: Cellulose nanocrystal based composites: A review. Composites Part C: Open Access, 5,100164 (2021)
DOI: 10.1016/j.jcomc.2021.100164
Google Scholar
[40]
Ramos, P.Z., Call, C.C., Simitz, L.V., Richards, J.J.: Evaluating the rheo-electric performance of aqueous suspensions of oxidized carbon black. J. Coll. Inter. Sci 634, 379-387(2023)
DOI: 10.1016/j.jcis.2022.12.017
Google Scholar
[41]
Li, J.B., Zhu, C.Y., Guo, B.B., Liu, C., Xin, J.H., Zhang, C., Wu, J., Zhang, L., Yang, H.C., Xu, Z.K.: Ultrahigh-permeance polyamide thin-film composite membranes enabled by interfacial polymerization on a macro-porous substrate toward organic solvent nanofiltration. J. Membrane Sci. 122342 (2023)
DOI: 10.1016/j.memsci.2023.122342
Google Scholar
[42]
Raza, M., Abu-Jdayil, B., Banat, F. and Al-Marzouqi, A.H.: Isolation and characterization of cellulose nanocrystals from date palm waste. ACS omega, 7(29), 25366-25379 (2022).
DOI: 10.1021/acsomega.2c02333
Google Scholar
[43]
Pouresmaeel-Selkjani, P., Jahanshahi, M., amp; Peyravi, M.: Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Performance Polymers, 29(7), 759-771 (2017).
DOI: 10.1177/0954008316656742
Google Scholar
[44]
Ismail, N. M., Jakariah, N. R., Bolong, N., Anissuzaman, S. M., Nordin, N. A. H. M., & Razali, A. R.: Effect of polymer concentration on the morphology and mechanical properties of asymmetric polysulfone (PSf) membrane. Journal of Applied Membrane Science & Technology, 21(1), (2017).
DOI: 10.11113/amst.v21i1.107
Google Scholar
[45]
Yang, X., Liu, H., Zhao, Y., amp; Liu, L.: Preparation and characterization of polysulfone membrane incorporating cellulose nanocrystals extracted from corn husks. Fibers and Polymers, 17, 1820-1828 (2016).
DOI: 10.1007/s12221-016-6762-7
Google Scholar
[46]
Masese, F.K., Njenga, P.K., Ndaya, D.M. and Kasi, R.M., 2023. Recent Advances and Opportunities for Cellulose Nanocrystal-Based Liquid Crystalline Polymer Hybrids and Composite Materials. Macromolecules, 56(17), pp.6567-6588
DOI: 10.1021/acs.macromol.3c00369
Google Scholar
[47]
Hynninen, V., Patrakka, J. Nonappa: Methylcellulose–cellulose nanocrystal composites for optomechanically tunable hydrogels and fibers. Materials, 14(18), 5137 (2021)
DOI: 10.3390/ma14185137
Google Scholar
[48]
Li, J.B., Zhu, C.Y., Guo, B.B., Liu, C., Xin, J.H., Zhang, C., Wu, J., Zhang, L., Yang, H.C., Xu, Z.K.: Ultrahigh-permeance polyamide thin-film composite membranes enabled by interfacial polymerization on a macro-porous substrate toward organic solvent nanofiltration. J. Membrane Sci. 122342 (2023)
DOI: 10.1016/j.memsci.2023.122342
Google Scholar
[49]
Abedi, F.: Thin Film Nanocomposite Membranes Using Cellulose Nanocrystals for Water Treatment (Doctoral dissertation, Université d'Ottawa/University of Ottawa) (2023). http://hdl.handle.net/10393/45239
Google Scholar
[50]
Cheng, X., Zhang, Y., Shao, S., Lai, C., Wu, D., Xu, J., Luo, X., Xu, D., Liang, H., Zhu, X.: Highly permeable positively charged nanofiltration membranes with multilayer structures for multiple heavy metal removals. Desalination 548, 116266 (2023)
DOI: 10.1016/j.desal.2022.116266
Google Scholar
[51]
Hurwitz, G., Guillen, G.R., Hoek, E.M. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Memb. Sci. 349, 349–357 (2010).
DOI: 10.1016/j.memsci.2009.11.063
Google Scholar
[52]
Yan, W., Wang, Z., Wu, J., Zhao, S., Wang, J., Wang, S.: Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. J. Memb. Sci. 498, 227–241 (2016).
DOI: 10.1016/j.memsci.2015.10.029
Google Scholar
[53]
Wang, J., Xu, R., Yang, F., Kang, J., Cao, Y., Xiang, M.: Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J. Memb. Sci. 556, 374–383 (2018).
DOI: 10.1016/j.memsci.2018.04.011
Google Scholar