Biomechanical Effects of Titanium Alloy Based Single versus Dual Cage Fusion Devices

Article Preview

Abstract:

Degenerative disc disease is an increasing problematic complication following lumbar fusion surgeries. Posterior lumbar interbody fusion (PLIF) is a well-established surgical method for spine stability following intervertebral disc removal. The position and number of titanium cages in PLIF are remain contingent on individual surgeon experience. Thus, a systemic investigation of the efficacy of titanium single mega cage versus two cages in treating degenerative lumbar spinal diseases is imperative. A biomechanical study was aimed to compare the stability achieved in PLIF through interbody reconstruction using a single mega cage (32 mm) Vs. a dual cage (22 mm). Normal intact finite element model of L3–L4 was developed based on computed tomography images from a healthy 27-year-old male volunteer. The study tested the intact model (Model A) and its surgically operated counterparts using four PLIF implantation methods: single transverse cage (Model B), single transverse cage with bone graft (Model C), dual transverse cage (Model D), and dual transverse cage with bone graft (Model E). Combined loads simulating physiological motions—flexion, extension, axial rotation, and lateral bending —were applied across all loading directions. The assessment includes all model range of motion (ROM), micromotion between the cage and endplate, and stress on the cage and internal fixation system (screw and rod). The ROM between Models B, C, D and E were consistently reduced by over 71% compared to intact Model A under all motion scenarios. Model D exhibited the highest peak stress of 115 MPa on the cage during flexion, surpassing Model C and E (Flexion) by fourfold. Model E demonstrated the lowest cage stress (20 MPa) during extension, outperforming the other models. Notably, Model E exhibited minimal endplate stress (2 MPa), cage stress (21 MPa), micromotion (13 µm) during extension, and screw-rod stress (56 MPa) during flexion, making it superior to other implantation methods. In the context of PLIF, Model E showed enhanced biomechanical stability, reducing ROM, stress on the endplates, cage, screw-rod system and micromotion. Alternatively, Model C may be a viable alternative in standard PLIF, especially in cases with limited intervertebral space, providing efficient clinical outcomes with shorter operative times and reduced costs and ease of implantation. Also, this computational study provides valuable understandings into optimizing cage implantation strategies for improved outcomes during PLIF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-94

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Cloward, The treatment of ruptured lumbar intervertebral discs by vertebral body fusion: I. Indications, operative technique, after care, Journal of neurosurgery. 10(2) (1953) 154-168.

DOI: 10.3171/jns.1953.10.2.0154

Google Scholar

[2] R.B. Cloward, 4 Lesions of the Intervertebral Disks and Their Treatment by Interbody Fusion Methods The Painful Disk, Clinical Orthopaedics and Related Research (1976-2007). 27 (1963) 51-77.

DOI: 10.1097/00003086-196300270-00006

Google Scholar

[3] B. Meng, J. Bunch, D. Burton, J. Wang, Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies, European Spine Journal. 30 (2021) 22-33.

DOI: 10.1007/s00586-020-06596-0

Google Scholar

[4] W.F. Lestini, J.S. Fulghum, L.A. Whitehurst, Lumbar spinal fusion: advantages of posterior lumbar interbody fusion, Surgical technology international. 3 (1994) 577-590.

Google Scholar

[5] C.D. Cole, T.D. McCall, M.H. Schmidt, A.T. Dailey, Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches, Current reviews in musculoskeletal medicine. 2 (2009) 118-126.

DOI: 10.1007/s12178-009-9053-8

Google Scholar

[6] G.R. Fogel, J.S. Toohey, A. Neidre, J.W. Brantigan, Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages, Clinical Spine Surgery. 20(1) (2007) 60-65.

DOI: 10.1097/01.bsd.0000211251.59953.a4

Google Scholar

[7] Verma, R., Kumar, J., Singh, N. K., Rai, S. K., Saxena, K. K., & Xu, J. (2022). Design and analysis of biomedical scaffolds using TPMS-based porous structures inspired from additive manufacturing. Coatings, 12(6), 839.

DOI: 10.3390/coatings12060839

Google Scholar

[8] H.R. Newman, J.F. DeLucca, J.M. Peloquin, E.J. Vresilovic, D.M. Elliott, Multiaxial validation of a finite element model of the intervertebral disc with multigenerational fibers to establish residual strain. JOR spine. 4(2), (2021) e1145.

DOI: 10.1002/jsp2.1145

Google Scholar

[9] R. Remus, A. Lipphaus, M. Neumann, B. Bender, Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth–The passive structures, PLoS One. 16(4) (2021) e0250456.

DOI: 10.1371/journal.pone.0250456

Google Scholar

[10] A.A. WHITE III, Clinical biomechanics of cervical spine implants, Spine. 14(10) (1989) 1040-1045.

DOI: 10.1097/00007632-198910000-00002

Google Scholar

[11] V.K. Goel, B.T. Monroe, L.G. Gilbertson, P. Brinckmann, Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 20(6) (1995) 689-698.

DOI: 10.1097/00007632-199503150-00010

Google Scholar

[12] Z. Xiao, L. Wang, H. Gong, J. Gao, X. Zhang, Establishment and verification of a non-linear finite element model for human L4–L5 lumbar segment. In 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE. 3 (2010) 1171-1175.

DOI: 10.1109/bmei.2010.5639592

Google Scholar

[13] P.R. Landham, A.S. Don, P.A. Robertson, Do position and size matter? An analysis of cage and placement variables for optimum lordosis in PLIF reconstruction, European Spine Journal. 26 (2017) 2843-2850.

DOI: 10.1007/s00586-017-5170-z

Google Scholar

[14] T.V. Le, A.A. Baaj, E. Dakwar, C.J. Burkett, G. Murray, D.A. Smith, J.S. Uribe, Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion, Spine. 37(14) (2012) 1268-1273.

DOI: 10.1097/brs.0b013e3182458b2f

Google Scholar

[15] Y.H. Lee, C.J. Chung, C.W. Wang, Y.T. Peng, C.H. Chang, C.H. Chen, Y.N. Chen, C.T. Li, Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity, Computers in biology and medicine. 71 (2016) 35-45.

DOI: 10.1016/j.compbiomed.2016.01.024

Google Scholar

[16] Q.Y. Li, H.J. Kim, J. Son, K.T. Kang, B.S. Chang, C.K. Lee, H.S. Seok, J.S. Yeom, Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine–Validated finite element analysis, Computers in biology and medicine. 89 (2017) 512-519.

DOI: 10.1016/j.compbiomed.2017.09.003

Google Scholar

[17] P.M. Lin, Posterior lumbar interbody fusion (PLIF): past, present, and future, Clinical Neurosurgery. 47 (2000) 470-482.

Google Scholar

[18] Y.M. Lu, W.C. Hutton, V.M. Gharpuray, Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model, Spine. 21(22) (1996) 2570-2579.

DOI: 10.1097/00007632-199611150-00006

Google Scholar

[19] R.J. Bianco, P.J. Arnoux, E. Wagnac, J.M. Mac-Thiong, C.E. Aubin, minimizing pedicle screw pullout risks: a detailed biomechanical analysis of screw design and placement, Clin Spine Surg. 30(3) (2017) E226–E232.

DOI: 10.1097/bsd.0000000000000151

Google Scholar

[20] Z. Zhang, G.R. Fogel, Z. Liao, Y. Sun, W. Liu, Biomechanical analysis of lateral lumbar interbody fusion constructs with various fixation options: based on a validated finite element model, World neurosurgery. 114 (2018) e1120-e1129.

DOI: 10.1016/j.wneu.2018.03.158

Google Scholar

[21] Y.F. Zhang, H.L. Yang, J.W. Wang, T.S. Tang, Two‐year follow‐up results after treatment of lumbar instability with titanium‐coated fusion system, Orthopaedic surgery. 1(2) (2009) 94-100.

DOI: 10.1111/j.1757-7861.2009.00026.x

Google Scholar

[22] C.C. Lo, K.J. Tsai, Z.C. Zhong, S.H. Chen, C. Hung, Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF–a finite element study, Computer methods in biomechanics and biomedical engineering. 14(11) (2011) 947-956.

DOI: 10.1080/10255842.2010.501762

Google Scholar

[23] D.V. Ambati, E.K. Wright Jr, R.A. Lehman Jr, D.G. Kang, S.C. Wagner, A.E. Dmitriev, Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study, The spine journal. 15(8) (2015) 1812-1822.

DOI: 10.1016/j.spinee.2014.06.015

Google Scholar

[24] M. Dreischarf, T. Zander, A. Shirazi-Adl, C.M. Puttlitz, C.J. Adam, C.S. Chen, V.K. Goel, A. Kiapour, Y.H. Kim, K.M. Labus, J.P. Little, W.M. Park, Y.H. Wang, H.J. Wilke, A. Rohlmann, H. Schmidt, Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together, Journal of biomechanics. 47(8) (2014) 1757-1766.

DOI: 10.1016/j.jbiomech.2014.04.002

Google Scholar

[25] M.F. Chiang, Z.C. Zhong, C.S. Chen, C.K. Cheng, S.L. Shih, Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis, Spine. 31(19) (2006) E682-E689.

DOI: 10.1097/01.brs.0000232714.72699.8e

Google Scholar

[26] J.J. Carmouche, R.W. Molinari, Epidural abscess and discitis complicating instrumented posterior lumbar interbody fusion: a case report, Spine. 29(23) (2004) E542-E546.

DOI: 10.1097/01.brs.0000146802.38753.38

Google Scholar

[27] E.M. Pinto, A. Teixeira, R. Frada, P. Atilano, A. Miranda, Surgical risk factors associated with the development of adjacent segment pathology in the lumbar spine, EFORT open reviews. 6(10) (2021) 966-972.

DOI: 10.1302/2058-5241.6.210050

Google Scholar

[28] Y. Hou, H. Shi, H. Shi, T. Zhao, J. Shi, G. Shi, A meta-analysis of risk factors for cage migration after lumbar fusion surgery, World Neurosurgery: X. (2023). 100152.

DOI: 10.1016/j.wnsx.2023.100152

Google Scholar

[29] A. Nassr, J.Y. Lee, R.S. Bashir, J.A. Rihn, J.C. Eck, J.D. Kang, M.R. Lim, Does incorrect level needle localization during anterior cervical discectomy and fusion lead to accelerated disc degeneration?, Spine. 34(2) (2009) 189-192.

DOI: 10.1097/brs.0b013e3181913872

Google Scholar

[30] M. D'Souza, N.A. Macdonald, J.L. Gendreau, P.J. Duddleston, A.Y. Feng, A.L. Ho, Graft materials and biologics for spinal interbody fusion, Biomedicines. 7(4) (2019) 75.

DOI: 10.3390/biomedicines7040075

Google Scholar

[31] C.M. Shih, C.H. Lee, K.H. Chen, C.C. Pan, Y.C. Yen, C.H. Wang, K.C. Su, Optimizing Spinal Fusion Cage Design to Improve Bone Substitute Filling on Varying Disc Heights: A 3D Printing Study, Bioengineering. 10(11) (2023) 1250.

DOI: 10.3390/bioengineering10111250

Google Scholar

[32] M.J. Voor, S. Mehta, M. Wang, Y.M. Zhang, J. Mahan, J.R. Johnson, Biomechanical evaluation of posterior and anterior lumbar interbody fusion techniques, Clinical Spine Surgery. 11(4) (1998) 328-334.

DOI: 10.1097/00002517-199808000-00011

Google Scholar

[33] H.J. Wilke, P. Neef, M. Caimi, T. Hoogland, L.E. Claes, New in vivo measurements of pressures in the intervertebral disc in daily life, Spine. 24(8) (1999) 755-762.

DOI: 10.1097/00007632-199904150-00005

Google Scholar

[34] B.W. Cunningham, N. Hu, C.M. Zorn, P.C. McAfee, Biomechanical evaluation of threaded cages for lumbar interbody fusion, Spine. 27(4) (2002) 363-367.

Google Scholar

[35] H.J. Wilke, K. Wenger, L. Claes, Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants, European spine journal. 7 (1998) 148-154.

DOI: 10.1007/s005860050045

Google Scholar

[36] G. Ghiselli, N. Wharton, J.A. Hipp, D.A. Wong, S. Jatana, Prospective Analysis of Imaging Prediction of Pseudarthrosis After Anterior Cervical Discectomy and Fusion: Computed Tomography: Versus: Flexion-Extension Motion Analysis With Intraoperative Correlation, Spine, 36(6) (2011) 463-468.

DOI: 10.1097/brs.0b013e3181d7a81a

Google Scholar

[37] A. Kettler, H.J. Wilke, R. Dietl, M. Krammer, C. Lumenta, L. Claes, Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading, Journal of Neurosurgery: Spine. 92(1) (2000) 87-92.

DOI: 10.3171/spi.2000.92.1.0087

Google Scholar

[38] A.A. WHITE III, M.M. PANJABI, The role of stabilization in the treatment of cervical spine injuries, Spine. 9(5) (1984) 512-522.

DOI: 10.1097/00007632-198407000-00021

Google Scholar

[39] C.S. Kuo, H.T. Hu, L.C. Wu, C.L. Sun, Biomechanical analysis of different types of lumbar reconstruction devices, Clinical Biomechanics. 24(6) (2009) 467-472.

Google Scholar

[40] J. Wu, Q. Feng, D. Yang, H. Xu, W. Wen, H. Xu, J. Miao, Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis, BMC Musculoskeletal Disorders. 24(1) (2023) 1-11.

DOI: 10.1186/s12891-023-06201-7

Google Scholar

[41] R.M. Pilliar, H.U. Cameron, R.P. Welsh, A.G. Binnington, Radiographic and morphologic studies of load-bearing porous-surfaced structured implants, Clinical Orthopaedics and Related Research (1976-2007). (1981) 156, 249-257.

DOI: 10.1097/00003086-198105000-00037

Google Scholar

[42] M. Lin, S.Z. Shapiro, J. Doulgeris, E.D. Engeberg, C.T. Tsai, F.D. Vrionis, Cage-screw and anterior plating combination reduces the risk of micromotion and subsidence in multilevel anterior cervical discectomy and fusion—A finite element study, The Spine Journal. 21(5) (2021) 874-882.

DOI: 10.1016/j.spinee.2021.01.015

Google Scholar

[43] E.H. Ledet, G.P. Sanders, D.J. DiRisio, J.C. Glennon, Load-sharing through elastic micro-motion accelerates bone formation and interbody fusion, The Spine Journal. 18(7) (2018) 1222-1230.

DOI: 10.1016/j.spinee.2018.02.004

Google Scholar

[44] D.W. Overaker, N.A. Langrana, A.M. Cuitin˜ o, (1999). Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core.

DOI: 10.1115/1.2835085

Google Scholar

[45] A. Polikeit, S.J. Ferguson, L.P. Nolte, T.E. Orr, Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis, European spine journal. 12 (2003) 413-420.

DOI: 10.1007/s00586-002-0505-8

Google Scholar