Regularities of Martensitic Transformations in New Medium-Entropy Single Crystals of CoNiAlFe Alloys

Article Preview

Abstract:

This paper deals with the martensitic transformation and functional properties in the quenched single crystals of the Co35Ni35Al28Fe2 medium-entropy alloy, oriented along the [001]B2-direction. The microstructure and chemical composition of the single crystals have been studied in detail using transmission and scanning electron microscopy. The {111}L10 martensite twins up to 10-20 nm width and γ/γ′-phase precipitations larger than 100 μm are detected. The thermoelastic B2-L10 martensitic transformation upon stress-free cooling/heating in single crystals of Co35Ni35Al28Fe2 alloy is characterized by the accumulation of elastic energy, which is the driving force of the reverse martensitic transformation, and the low dissipation energy. The reverse transformation starts at lower temperatures than the forward transformation Ms>As. The regularities of the stress-induced B2-L10 martensitic transformation change due to an increase in the contribution of the dissipated energy and Msσ<Asσ. There is shape memory effect with the reversible strain (3.2±0.3)% and high temperature superelasticity with the reversible strain (3.3±0.3)% in the temperature range from 323 K to ≥548 K in the [001]B2-oriented single crystals. These crystals withstand stress up to 1200 MPa in compression without destruction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-15

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Design of non-equiatomic medium-entropy alloys, Sci. Rep. 8 (2018) 1236

DOI: 10.1038/s41598-018-19449-0

Google Scholar

[2] W. Jiang, Y. Zhu, Y. Zhao, Mechanical Properties and deformation mechanisms of heterostructured high-entropy and medium-entropy alloys: A review, Front. Mater. 2 (2022) 792359.

DOI: 10.3389/fmats.2021.792359

Google Scholar

[3] F. Luo, J. Chen, K. Chen, K. Oikawa, K. Ishida, Influence of Fe on martensitic and magnetic transformation of p based Co-Ni-Al all, J. Funct. Mater. 36(12) (2005) 1862–1865.

Google Scholar

[4] J. Ju, F. Xue, L. Sun, Effect of rapid solidification on the microstructure and magnetic-field induced strain of Co1.36Ni1.21AlFe0.12, Mater. Manuf. Process. 30(5) (2015) 637–643.

Google Scholar

[5] H. Chen, J. Ju, L. Shuai, H. Liu, C. Yan, Z. Liu, Structure and martensitic transformation in rapidly solidified CoNiAlFe alloy, Metals 7(11) (2017) 473.

DOI: 10.3390/met7110473

Google Scholar

[6] J. Dadda, H.J. Maier, D. Niklasch, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Pseudoelasticity and cyclic stability in Co49Ni21Ga30 Shape-memory alloy single crystals at ambient temperature, Metall. Mater. Trans. A. 39 (2008) 2026–2039.

DOI: 10.1007/s11661-008-9543-0

Google Scholar

[7] Y. Tanaka, K. Oikawa, Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β+γ two-phase structure, Mater. Sci. Eng. A. 438–440 (2006) 1054–1060.

DOI: 10.1016/j.msea.2006.05.021

Google Scholar

[8] A. Eftifeeva, E. Panchenko, Yu. Chumlyakov, E. Yanushonite, G. Gerstein, H.J. Maier, Compressive response of high-strength [001]-oriented single crystals of a Co35Ni35Al30 shape memory alloy, J. Alloys Compd. 787 (2019) 963–971.

DOI: 10.1016/j.jallcom.2019.02.185

Google Scholar

[9] Y. Zhou, P. Nash, S. Bessa, G. Ferrigatto, B. Madureira, A. Magalhães, A. Oliveira, G. Pereira, L. Ribeiro, L. Santos, A. Silva, J. Silva, A. Silva, J. Souza, Y. Torres, R. Silva, B. Cunha, Phase equilibria in the Al-Co-Ni alloy system, J. Phase Equilib. Diffus. 38 (2017) 630–645.

DOI: 10.1007/s11669-017-0586-z

Google Scholar

[10] E. Dogan, I. Karaman, Y.I. Chumlyakov, Z.P. Luo, Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloy, Acta Mater. 59(3) (2011) 1168–1183.

DOI: 10.1016/j.actamat.2010.10.050

Google Scholar

[11] F. Zhou, Y. Zhou, J. Wang, J. Liang, H. Gao, M. Kang, Enlightening from γ, γ' and β phase transformations in Al-Co-Ni alloy system: A review, Curr. Opin. Solid State Mater. Sci. 23(6) (2019) 100784.

DOI: 10.1016/j.cossms.2019.100784

Google Scholar

[12] C. Wang, F. Zhou, Y. Zhou, M. Wang, J. Liang, J. Wang, B. Gan, Investigations of strength and ductility in Ni-xCo-10Al alloys via discontinuous precipitation, Mater. Charact. 163 (2020) 110318.

DOI: 10.1016/j.matchar.2020.110318

Google Scholar

[13] J. Ortinh, A. Planes, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations, Acta Metall. 36(8) (1988) 1873–1889.

DOI: 10.1016/0001-6160(88)90291-x

Google Scholar

[14] D.L. Beke, L. Darуczi, T.Y. Elrasasi, Determination of elastic and dissipative energy contributions to martensitic phase transformation in shape memory alloys, in: F.M.B. Fernandes (Ed.), Shape Memory Alloys – Processing, Characterization and Applications, IntechOpen, UK, 2013, p.1–30.

DOI: 10.5772/51511

Google Scholar

[15] E.Y. Panchenko, Y.I. Chumlyakov, V.A. Kirillov, A.S. Kanafieva, H. Maier, Characteristic features of development of thermoelastic transformations in aged single crystals of a CoNiAl ferromagnetic alloy, Russ. Phys. J. 54(6) (2011) 721–728.

DOI: 10.1007/s11182-011-9675-3

Google Scholar

[16] К. Otsuka, C.M. Wayman, Shape memory material, Cambridge University PRESS, 1998.

Google Scholar

[17] J. Dadda, H.J. Maier, I. Karaman, Y.I. Chumlyakov, Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys, Acta Mater. 57 (2009) 6123–6134.

DOI: 10.1016/j.actamat.2009.08.038

Google Scholar