Low-Temperature Mixed Mode (I/II) Fracture Characterization of Polymerized Sulfur Modified AC Mixtures

Article Preview

Abstract:

In this study, asphalt concrete (AC) mixtures were modified with polymerized sulfur, using PG58-22 bitumen, and crushed siliceous aggregate. Modifications involved replacing the base binder with 20%, 30%, and 50% polymerized sulfur, compared to a control mix with no replacement. The mixtures were subjected to Single Edge Notched-Beam (SE(B)) fracture tests under mixed mode (I/II) conditions with notch offset value of 48 mm, with temperatures ranging from 0 °C to -20 °C. These tests, focusing on the mixtures' response to mixed mode loading, provided load-displacement curves, enabling the determination of fracture energy. Results indicated an increase in fracture energy for 20% and 30% sulfur-modified mixtures. However, a trend towards increased embrittlement was also observed, as fractures occurred at lower displacements. Significantly, higher sulfur content correlated with similar or decreased mixed-mode (I/II) fracture energy, suggesting an improved resistance to low-temperature cracking for lower replacement percentages.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-66

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Garrigues, J.B. Signouret, C. Chanbu, U.S. Patent 3,790,468. (1976)

Google Scholar

[2] P. Dashti, S. Ranjbar, S. Ghafari: J. Clean. Prod. Vol. 428 (2023), p.139365.

Google Scholar

[3] V. H. Nguyen, and V. P. Le: Int. J. Pavement Res. Technol. Vol. 12 (2019), pp.380-387.

Google Scholar

[4] S.A. Elkholy, and A.M.M. Abd El-Rahman: Int. J. Pavement Res. Technol. Vol. 11 (2018), pp.838-845.

Google Scholar

[5] K.W. Kim, and M. El-Hossein: J. Constr. Build. Mater. Vol. 11 (1997), pp.403-411.

Google Scholar

[6] M. Marasteanu, and S. Dai: J. Transp. Res. Board. Vol. 1789 (2002), pp.191-199.

Google Scholar

[7] T. L. Anderson: Fracture Mechanics Fundamentals and Applications (CRC Press, 2016).

Google Scholar

[8] S. Ghafari, and F. Moghadas Nejad: J. Cent. South. Univ. Vol. 20 (2013), pp.2563-2569.

Google Scholar

[9] S. Yang, and A. Braham: Inl. J. Pavement. Eng. Vol 19:2 (2018), pp.99-108

Google Scholar

[10] S. Ghafari, and F. Moghadas Nejad: J. Constr. Build. Mater. Vol. 313 (2021), p.125567.

Google Scholar

[11] S. Ghafari, M. Ehsani, and F. Moghadas Nejad: J. Constr. Build. Mater. Vol. 314 (2022), p.125332.

Google Scholar

[12] S. Ghafari, F. Moghadas Nejad: Theor. Appl. Fract. Mech. Vol 117 (2022), p.103156.

Google Scholar

[13] S. Ghafari, F. Moghadas Nejad: Key Eng. Mater. Vol. 894 (2021), pp.109-114.

Google Scholar

[14] S. Ghafari, S. Ranjbar: Theor. Appl. Fract. Mech. Vol 123 (2023), p.103718.

Google Scholar

[15] S.Ghafari, F. Moghadas Nejad: Key Eng. Mater. Vol. 951 (2023), pp.141-146.

Google Scholar

[16] S. Ghafari, F. Moghadas Nejad: Key Eng. Mater. Vol. 951 (2023), pp.155-160.

Google Scholar

[17] S. Ghafari, F. Moghadas Nejad: Key Eng. Mater. Vol. 958 (2023), pp.195-199.

Google Scholar

[18] S. Ghafari, and F. Moghadas Nejad: J. Constr. Build. Mater. Vol. 428 (2024), p.136376.

Google Scholar

[19] S. Ghafari, and F. Moghadas Nejad: J. Civ. Eng. Manag. Vol 21 (2015), pp.559-570.

Google Scholar