Recent Trends in Nitrogen Cooling Modelling of Extrusion Dies

Article Preview

Abstract:

Nitrogen cooling has been identified as a powerful industrial solution for the hot extrusion process to remove heat in the die and in the profile. The complexity involved in the design of cooling channels depends on many factors, including the cooling path, its position with respect to the hottest zones as well as the nitrogen phase change that strongly affects the heat removal capacity. However, the industrial approach is still stuck in the empirical and based-experience practices that too often strongly limit the possibilities of obtaining a performing cooling solution. In this context, this work intends to summarize and discuss the advanced recent trends in the design of cooling channels for extrusion dies proposed by the authors based on the numerical approaches, with the final aim to propose possible solutions to fill the current gaps of the suboptimal industrial approaches.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Stratton, Raising productivity of aluminium extrusion with nitrogen, Int. Heat Treat. Surf. Eng. 2(3-4) (2008) 105-108.

Google Scholar

[2] L. Donati, et al, Effect of liquid nitrogen die cooling on extrusion process conditions, Key Eng. Mater. 491 (2012) 215-222.

DOI: 10.4028/www.scientific.net/kem.491.215

Google Scholar

[3] L. Donati, B. Reggiani, R. Pelaccia, M. Negozio, S. Di Donato, Advancements in extrusion and drawing: a review of the contributes by the ESAFORM community, Int. J. Mater. Form. 15 (2022) 41.

DOI: 10.1007/s12289-022-01664-w

Google Scholar

[4] R. Pelaccia, M. Negozio, L. Donati, B. Reggiani, L. Tomesani, Extrusion of Light and Ultralight Alloys with Liquid Nitrogen Conformal Cooled Dies: Process Analysis and Simulation, J. Mater. Eng. Perform. 31 (2021) 1991-2001.

DOI: 10.1007/s11665-021-06320-z

Google Scholar

[5] A.F. Ciuffini, et al., Surface Quality Improvement of AA6060 Aluminum Extruded Components through Liquid Nitrogen Mold Cooling, Metals 8(6) (2018) 409.

DOI: 10.3390/met8060409

Google Scholar

[6] R. Pelaccia, B. Reggiani, et al., Liquid nitrogen in the industrial practice of hot aluminium extrusion: experimental and numerical investigation, Int J Adv Manuf Technol. 119 (2022) 3141–3155.

DOI: 10.1007/s00170-021-08422-3

Google Scholar

[7] D. Pazeto, J.L.J Pereira, G.F Gomes, Numerical simulation and multiobjective optimization of fluid–structure interaction in aluminum extrusion, Int J Adv Manuf Technol 124 (2023) 545–566.

DOI: 10.1007/s00170-022-10543-2

Google Scholar

[8] M.M. Marín, A.M. Camacho, J.A. Pérez, Influence of the temperature on AA6061 aluminum alloy in a hot extrusion process, Procedia Manuf. 13 (2017) 327-334.

DOI: 10.1016/j.promfg.2017.09.084

Google Scholar

[9] I. Kniazkin, R. Pelaccia, et al., Investigation of the skin contamination predictability by means of QForm UK extrusion code, Mater. Res. Proc. 28 (2023) 543-552.

DOI: 10.21741/9781644902479-59

Google Scholar

[10] J. Tang, L. Chen, Z. Li, et al., Evolution mechanisms of charge weld during porthole die extrusion of ZK60 Mg profile, J. Mater. Process. Technol. 300 (2022) 117401.

DOI: 10.1016/j.jmatprotec.2021.117401

Google Scholar

[11] C. Zhang, Y. Dong, et al., Experimental and numerical investigations on transverse weld of hollow aluminum profile during porthole extrusion process, Procedia Eng. 207 (2017) 1653-1658.

DOI: 10.1016/j.proeng.2017.10.1095

Google Scholar

[12] L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code, Int. J. Plast. 46 (2013) 70-81.

DOI: 10.1016/j.ijplas.2012.11.008

Google Scholar

[13] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, Simulation of the microstructure evolution during the extrusion of two industrial-scale AA6063 profiles, J. Manuf. Process 99 (2023) 501-512.

DOI: 10.1016/j.jmapro.2023.05.075

Google Scholar

[14] E. Giarmas, D. Tzetzis, Optimization of die design for extrusion of 6xxx series aluminum alloys through finite element analysis: a critical review. Int. J. Adv. Manuf. Technol. 119 (2022) 5529–5551.

DOI: 10.1007/s00170-022-08694-3

Google Scholar

[15] R. Hölker, A.E. Tekkaya, Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels, Int. J. Adv. Manuf. Technol. 83 (2016) 1209-1220.

DOI: 10.1007/s00170-015-7647-4

Google Scholar

[16] M. Mazur, P. Brincat, et al., Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting, Int. J Adv. Manuf. Technol. 93 (2017) 881-900.

DOI: 10.1007/s00170-017-0426-7

Google Scholar

[17] A. Armillotta, R. Baraggi, S. Fasoli, SLM tooling for die casting with conformal cooling channels, Int. J Adv. Manuf. Technol. 71(2014) 573-583.

DOI: 10.1007/s00170-013-5523-7

Google Scholar

[18] C. Tahri, P. Lequien, et al., CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: Application to milling of titanium alloy Ti-6Al-4, Procedia CIRP 58 (2017) 584-589.

DOI: 10.1016/j.procir.2017.03.230

Google Scholar

[19] R. Pelaccia, P. E. Santangelo, A Homogeneous Flow Model for nitrogen cooling in the aluminum-alloy extrusion process, Int. J. Heat Mass Transf. 195 (2022) 123202.

DOI: 10.1016/j.ijheatmasstransfer.2022.123202

Google Scholar

[20] R. Pelaccia, M. Negozio, et al., Assessment of the Optimization Strategy for Nitrogen Cooling Channel Design in Extrusion Dies, Key Eng Mater. 926 (2022) 460–470.

DOI: 10.4028/p-f7i0y2

Google Scholar

[21] R. Pelaccia, B. Reggiani, M. Negozio, S. Di Donato, L. Donati, Investigation on the topological optimization of cooling channels for extrusion dies, Mater. Res. Proc. 28 (2023) 533-542.

DOI: 10.1016/j.promfg.2020.04.181

Google Scholar

[22] M. Pizzarelli, Effectiveness of Spalart–Allmaras Turbulence Model in Analysis of Curved Cooling Channels, AIAA Journal 51(9) (2013) 2158-2167.

DOI: 10.2514/1.j052062

Google Scholar