[1]
A. Narzary, J. Brahma and A. K. Das. Utilization of Waste Rice Straw for Charcoal Briquette Production using Three Different Binder: Cleaner Energy Systems Vol 5 (2023), pp.1-10
DOI: 10.1016/j.cles.2023.100072
Google Scholar
[2]
S.N.F.S. Adam, J.H.M. Aiman and et al. Processing and Characterisation of Charcoal Briquettes J. Phys.: Conf. Ser. (2021)
DOI: 10.1088/1742-6596/2080/1/012014
Google Scholar
[3]
T. Pattananandecha, S. Ramangkoon and et al. Preparation of High Performance Activated Charcoal form Rice Straw for Cosmetic and Pharmaceutical Applications: International Journal of Applied Pharmaceutics Vol 11(1) (2019), pp.255-260
DOI: 10.22159/ijap.2019v11i1.30637
Google Scholar
[4]
L. Lestari, V. Inda and et al. Characterization of Briquette from the Corncob Charcoal and Sago Stem Alloys: IOP Conf. Series: Journal of Physics: Conf. Series 846 (2017), pp.1-6
DOI: 10.1088/1742-6596/846/1/012012
Google Scholar
[5]
A. Srikhaow, E. E. Win and et al. Biochar Derived from Pineapple Leaf Non-Fibrous Materials and Ist Adsorption Capability for Pesticides: ACS Omega Vol 8 (2023), pp.26147-26157
DOI: 10.1021/acsomega.3c02328
Google Scholar
[6]
S. Wijitkosum and T. Sriburi. Aromaticity, Polarity and Longevity of Biochar Derived from Disposable Bamboo Chopsticks waste for environmental application: Hellyon Vol 9 (2023), e19831
DOI: 10.1016/j.heliyon.2023.e19831
Google Scholar
[7]
A. K. Sakhiya, P. Kaushal and V. K. Vijay. Process Optimization of Rice Straw-derived Activated Biochar and Biosorption of Heavy Metals from Drinking Water in Rural areas: Applied Surface Science Advance Vol 18 (2023), 100481
DOI: 10.1016/j.apsadv.2023.100481
Google Scholar
[8]
X. Li, T. Wang and et al. Aged Biochar for Simultaneous Removal of Pb and Cd from Aqueous Solutions: Method and Mechanism: Environmental Technology & Innovation Vol. 32 (2023), 103368
DOI: 10.1016/j.eti.2023.103368
Google Scholar
[9]
W. K. Siabi, E. D. Johnson, and et al. Modelling the Adsorption of Iron and Manganese by Activated Carbon from Teak and Shea Charcoal for Continous Low Flow: Water-Energy Nexus Vol. 4 (2021), pp.88-94
DOI: 10.1016/j.wen.2021.02.001
Google Scholar
[10]
M. Lasindrang, H. Suwarno, S.D. and et al. Adsorption Pollution Leather Tanning Industry Wastewater by Chitosan Coated Coconut Shell Active Charcoal: Agriculture and Agricultural: Science Procedia Vol. 3 (2015), pp.241-247
DOI: 10.1016/j.aaspro.2015.01.047
Google Scholar
[11]
M. Wijaya, M. Wiharto and M. Danial.Using Pine and Cocoa Waste with Pyrolysis Technology by Liquid Smoke, Charcoal and Bio Char: Journal of Physics: Conference Series 1321(2019), 022031
DOI: 10.1088/1742-6596/1321/2/022031
Google Scholar
[12]
P. Kumapley and F. Azumah. Charcoal Production in a Cocoa-Farming Area: Plant Species Used and Their Sources: Journal of Environmental Science and Engineering A Vol. 4 (2015), pp.258-265
DOI: 10.17265/2162-5298/2015.05.006
Google Scholar
[13]
M. Syamsiro, H. Sptoadi and B.H. Tambunan. Experimental Investigation on Combustion of Bio-Pellets from Indonesian Cocoa Pod Husk: Asian Journal of Applied Sciences Vol. 4(7) (2011), pp.712-719
DOI: 10.3923/ajaps.2011.712.719
Google Scholar
[14]
Z. D. Pangarso, L. Cahyaningsih, and et al. Nano Carbon-based as Supercapacitor Electrode from Cocoa Skin: Proc. Internat. Conf. Sci. Engin. Vol. 3 (2020), pp.175-178
DOI: 10.14421/icse.v3.493
Google Scholar