Hot Torsion Tests of AA6082 Alloy

Article Preview

Abstract:

Materials characterization and the knowledge of their elastic-plastic behavior are of fundamental importance for the design of industrial manufacturing processes. Nowadays, FEM simulation is the main tool used to optimize product quality and minimize scraps, and the numerical codes have evolved over the years to obtain accurate solutions with reduced computational times. Nevertheless, in order to perform reliable simulations, it is necessary to include accurate modeling of the material flow stress. Hot torsion is a powerful method for the characterization of the material flow stress because, tests can be carried out at constant speeds and temperatures, reaching large strain values, and thus getting over the limits of compression and tensile tests. In this paper the hot torsion characterization applied to AA6082 alloy is presented: tests were performed with equivalent strain rates of 0.01, 0.1, 1, and 10 s-1, in the temperature range from 440 to 550 °C (from 713.15 to 823.15 K). The results are presented in terms of equivalent stress vs equivalent strain. Finally, the material flow stress curve was predicted by the Hyperbolic sine model and Hensel-Spittel law, and the material parameters A, m1-9 are provided for the temperature expressed in °C and K.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] L. Donati, B. Reggiani, R. Pelaccia, M. Negozio, S. Di Donato, Advancements in extrusion and drawing: a review of the contributes by the ESAFORM community, International Journal of Material 15 41 (2022).

DOI: 10.1007/s12289-022-01664-w

Google Scholar

[2] L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code, International Journal of Plasticity 46 (2013) 70-81.

DOI: 10.1016/j.ijplas.2012.11.008

Google Scholar

[3] R. Pelaccia, B. Reggiani, M. Negozio, L. Donati, Liquid nitrogen in the industrial practice of hot aluminium extrusion: experimental and numerical investigation, Int J Adv Manuf Technol 119 (2022) 3141-3155.

DOI: 10.1007/s00170-021-08422-3

Google Scholar

[4] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, FEM Analysis of the Skin Contamination Behavior in the Extrusion of a AA6082 Profile, Key Engineering Materials Trans Tech Publications Ltd. (July 22, 2022).

DOI: 10.4028/p-y37nm3

Google Scholar

[5] R. Pelaccia, B. Reggiani, M. Negozio, S. Di Donato, L. Donati, Investigation on the topological optimization of cooling channels for extrusion dies, Materials Research Proceedings 28 (2023) 533-542.

DOI: 10.21741/9781644902479-58

Google Scholar

[6] I. Kniazkin, R. Pelaccia, M. Negozio, S. Di Donato, L. Donati, B. Reggiani, N. Biba, R. Rezvykh, I. Kulakov, Investigation of the skin contamination predictability by means of QForm UK extrusion code, Materials Research Proceedings 28 (2023) 543-552.

DOI: 10.21741/9781644902479-59

Google Scholar

[7] M. Negozio, L. Donati, R. Pelaccia, B. Reggiani, S. Di Donato, Experimental analysis and modeling of the recrystallization behaviour of a AA6060 extruded profile, Materials Research Proceedings 28 (2023) 477-486.

DOI: 10.21741/9781644902479-52

Google Scholar

[8] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, Simulation of the microstructure evolution during the extrusion of two industrial-scale AA6063 profiles, Journal of Manufacturing Processes 99 (2023) 501-512.

DOI: 10.1016/j.jmapro.2023.05.075

Google Scholar

[9] F. Garofalo, An empirical relation defining the stress dependence of minimum creep rate in metals, Transactions of the Metallurgical Society of Aime 227 (April 1963) 351-356.

Google Scholar

[10] C.M. Sellars, WJ McG Tegart, Memoires Scientifique Rev. Metallurg. 58 9 (1966) 731.

Google Scholar

[11] G.E. Dieter, S.L. Semiatin, H.A. Kuhn, Handbook of Workability and Process Design, ASM International publications United States of America (2003) 86-127.

Google Scholar

[12] L. Donati, M. El Mehtedi, Characterization of Flow Stress of Different AA6082 Alloys By Means Of Hot Torsion Test, AIPConf Proc 1353 (2011) 455-460.

DOI: 10.1063/1.3589557

Google Scholar

[13] M. El Mehtedi, S. Spigarelli, F. Gabrielli, L. Donati, Comparison Study of Constitutive Models in Predicting the Hot Deformation Behavior of AA6060 and AA6063 Aluminium Alloys, Materials Today: Proceedings 2 10 Part A (2015) 4732-4739.

DOI: 10.1016/j.matpr.2015.10.006

Google Scholar

[14] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, Deutscher Verlag für Grundstoffindustrie: Leipzig, Germany (1978) 336-360.

Google Scholar

[15] G.R. Canova, U.F. Kocks, J.J. Jonas, Theory of torsion texture development, Acta metall. 32 2 (1984) 211-226.

DOI: 10.1016/0001-6160(84)90050-6

Google Scholar

[16] A. Gräber, K. Pöhlandt, State of the art of the torsion test for determining flow curves, Steel Res. 61 (1990) 212-218.

DOI: 10.1002/srin.199000334

Google Scholar

[17] D.S. Fields, W.A. Backofen, Determination of strain-hardening characteristics by torsion testing, 57 (1957) 1259-1272.

Google Scholar

[18] B. Verlinden, A. Suhadi, L. Delaey, A generalized constitutive equation for an AA6060 Aluminium alloy, Scripta Metallurgica et Materialia 28 11 (1993) 1441-1446.

DOI: 10.1016/0956-716x(93)90496-f

Google Scholar

[19] S. Spigarelli, E. Evangelista, H.J. McQueen, Study of hot workability of a heat treated AA6082 aluminum alloy, Scripta Materialia 49 (2003) 179-183.

DOI: 10.1016/s1359-6462(03)00206-9

Google Scholar

[20] X. Chen,Y. Du, K. Du, T. Lian, B. Liu, Z. Li, X. Zhou, Identification of the Constitutive Model Parameters by Inverse Optimization Method and Characterization of Hot Deformation Behavior for Ultra-Supercritical Rotor Steel, Materials 14 8 (2021) 1958.

DOI: 10.3390/ma14081958

Google Scholar

[21] H. Wang, W. Wang, R. Zhai, R. Ma, J. Zhao, Z. Mu, Constitutive Equations for Describing the Warm and Hot Deformation Behavior of 20Cr2Ni4A Alloy Steel, Metals. 10 9 (2020) 1169.

DOI: 10.3390/met10091169

Google Scholar