[1]
E. Konca, A Comparison of the ballistic performances of various microstructures in MIL-A-12560 armor steel, Metals 10(4) (2020) 1-14.
DOI: 10.3390/met10040446
Google Scholar
[2]
A Guide to the Grades, Properties and Uses of Military Steel (2018) https://www.azom.com/ article.aspx?ArticleID=17291.
Google Scholar
[3]
S. Herbirowo, B. Adjiantoro, and T.B. Romijarso, Effects of austenitizing and forging on mechanical properties of MIL A-12560/AISI 4340 steel, IOP Conference Series: Materials Science and Engineering 202 (2017) 1-5.
DOI: 10.1088/1757-899x/202/1/012084
Google Scholar
[4]
Y.H. Shin, J.-H. Chung, and J.H. Kim, Test and estimation of ballistic armor performance for recent naval ship structural materials, International Journal of Naval Architecture and Ocean Engineering 10 (2018) 762-781.
DOI: 10.1016/j.ijnaoe.2017.10.007
Google Scholar
[5]
M.A. Abtew, F. Boussu, P. Bruniaux, C. Loghin, and I. Cristian, Ballistic impact mechanisms – a review on textiles and fibre-reinforced composites impact responses, Composite Structures 223 (2019) 1-41.
DOI: 10.1016/j.compstruct.2019.110966
Google Scholar
[6]
S.B. Sapozhnikov, O.A. Kudryavtsev, and M.V. Zhikharev, Fragment ballistic performance of homogenous and hybrid thermoplastic composites, International Journal of Impact Engineering 81 (2015) 8–16.
DOI: 10.1016/j.ijimpeng.2015.03.004
Google Scholar
[7]
W. Liu, Z. Chen, Z. Chen, X. Cheng, Y. Wang, X. Chen, J. Liu, B. Li, and S. Wang, Influence of different back laminate layers on ballistic performance of ceramic composite armor, Materials and Design 87 (2015) 421–427.
DOI: 10.1016/j.matdes.2015.08.024
Google Scholar
[8]
D. Zhang, Y. Sun, L. Chen, S. Zhang, and N. Pan, Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate, Materials and Design 54 (2014) 315–322.
DOI: 10.1016/j.matdes.2013.08.074
Google Scholar
[9]
N. Pundhir, H. Pathak, and S. Zafar, Ballistic impact performance of ultra-high molecular weight polyethylene (UHMWPE) composite armour, Sadhana Academy Proceedings in Engineering Science 46 (2021).
DOI: 10.1007/s12046-021-01730-0
Google Scholar
[10]
K. Kartikeya, H. Chouhan, K. Ram, S. Prasad, and N. Bhatnagar, Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles, International Journal of Impact Engineering 164 (2022) 1-13.
DOI: 10.1016/j.ijimpeng.2022.104211
Google Scholar
[11]
L. Ding, X. Gu, P. Shen, and X. Kong, Ballistic limit of UHMWPE composite armor under impact of ogive-nose projectile, Polymers 14(22) (2022) 1-22.
DOI: 10.3390/polym14224866
Google Scholar
[12]
NIJ, UL752, and ASTM: Popular Bulletproofing Standards Explained - Total Security Solutions (2021) https://www.tssbulletproof.com/blog/nij-ul752-and-astm-bulletproofing-standards-explained#:~:text=UL%2C%20ASTM%2C%20and%20NIJ%20are,of%20firearm%20under%20specific%20conditions.
Google Scholar
[13]
A.B. Dresch, J. Venturini, S. Arcaro, O.R.K. Montedo, and C.P. Bergmann, Ballistic ceramics and analysis of their mechanical properties for armour applications: a review, Ceramics International 47(7) (2021) 8743–8761.
DOI: 10.1016/j.ceramint.2020.12.095
Google Scholar
[14]
Silicon Carbide as Armor Material (2018) https://www.azom.com/article.aspx? ArticleID=15534.
Google Scholar
[15]
C. Kaufmann, D. Cronin, M. Worswick, G. Pageau, and A. Beth, Influence of material properties on the ballistic performance of ceramics for personal body armour, Shock and Vibration 10(1) (2003) 51–58.
DOI: 10.1155/2003/357637
Google Scholar
[16]
D. Hu, Y. Zhang, Z. Shen, and Q. Cai, Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems, Ceramics International 43(13) (2017) 10368–10376.
DOI: 10.1016/j.ceramint.2017.05.071
Google Scholar
[17]
Z. Shen, D. Hu, G. Yang, and X. Han, Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet, Composite Structures 213 (2019) 209–219.
DOI: 10.1016/j.compstruct.2019.01.078
Google Scholar
[18]
K.K. Wu, Y.L. Chen, J.N. Yeh, W.L. Chen, and C.S. Lin, Ballistic impact performance of SiC Ceramic-Dyneema fiber composite materials, Advances in Materials Science and Engineering 2020 (2020) 1–9.
DOI: 10.1155/2020/9457489
Google Scholar
[19]
Y. Hong, F. Xie, L. Xiong, M. Yu, X. Cheng, M. Qi, Z. Shen, G. Wu, T. Ma, and N. Jiang, The ballistic performance of laminated SiC ceramics for body armor and the effect of layer structure on it, Applied Sciences 11(13) (2021) 1-11.
DOI: 10.3390/app11136145
Google Scholar
[20]
G.F. Li, L. Yang, H. Xu, Y.Y. Guo, Z.W. Wang, L. Wang, C. Miao, and Y.C. Wu, A study of the ballistic protection mechanism of two kinds of structure against 7.62×54 mm ball ammunition, Journal of Physics: Conference Series 1507 (2020) 1-7.
DOI: 10.1088/1742-6596/1507/3/032025
Google Scholar
[21]
J. Marx, M. Portanova, and A. Rabiei, Ballistic performance of composite metal foam against large caliber threats, Composite Structures 225 (2019) 1-12.
DOI: 10.1016/j.compstruct.2019.111032
Google Scholar