Use of Modified Silica as Selective Adsorbent on Exhaust and Dissolved Gases

Article Preview

Abstract:

Emissions are substances that enter the air, whether or not they have the potential as pollutants. Emission gases can have adverse effects on the health of living beings, especially humans, and can contribute to an increase in the Earth's temperature. Therefore, separation efforts are needed to minimize the negative impacts caused by them. Adsorption method was categorized as absorption, cryogenic distillation, and membrane. Although there were shortcomings in adsorbing emission gases through the method, it remained a promising approach. Adsorption was recognized for its economic viability, technological effectiveness, thermally stability, corrosion resistance, high load capacity, and tunable surface properties. However, adsorption materials were categorized as porous carbon, zeolites, metal-organic frameworks (MOFs), porous polymers, and porous silica. A significant limitation of the method was its susceptibility to decreased capacity in the presence of water vapor. The analysis results showed that porous silica became a superior adsorption material due to its high porosity, which facilitated rapid gas diffusion. To enhance selectivity and adjust pore size, material modifications, particularly silica, became necessary. This showed that surface modification for silicasupported the improvements in selectivity and pore size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-99

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. G. A. Jahja and H. Sulistyarso, 'Strategi Pengembangan Kebijakan Penurunan Emisi Kendaraan di Kawasan Senayan, Jakarta', Jurnal Teknik ITS, vol. 8, no. 2, p.114–120, 2019.

DOI: 10.12962/j23373539.v8i2.47911

Google Scholar

[2] Sugiarti, 'Gas Pencemar Udara Dan Pengaruhnya Bagi Kesehatan Manusia Jurnal Chemica Vo', 2009.

Google Scholar

[3] J. K. Pandit, T. Harkin, C. Anderson, M. Ho, D. Wiley, and B. Hooper, 'CO2 emission reduction from natural gas power stations using a precipitating solvent absorption process', International Journal of Greenhouse Gas Control, vol. 28, p.234–247, 2014.

DOI: 10.1016/j.ijggc.2014.06.008

Google Scholar

[4] H. Li et al., 'Simulation of H2S and CO2 removal from IGCC syngas by cryogenic distillation', Carbon Capture Science and Technology, vol. 3, Jun. 2022.

DOI: 10.1016/j.ccst.2021.100012

Google Scholar

[5] J. Xu, H. Wu, Z. Wang, Z. Qiao, S. Zhao, and J. Wang, 'Recent advances on the membrane processes for CO2 separation', Chinese Journal of Chemical Engineering. Materials China, p.2280–2291, Nov. 01, 2018.

DOI: 10.1016/j.cjche.2018.08.020

Google Scholar

[6] X. Q. Zhang, W. C. Li, and A. H. Lu, 'Designed porous carbon materials for efficient CO2 adsorption and separation', Xinxing Tan Cailiao/New Carbon Materials, vol. 30, no. 6, p.481–501, Dec. 2015.

DOI: 10.1016/S1872-5805(15)60203-7

Google Scholar

[7] F. Hannah, B. Baldovino, N. P. Dugos, S. A. Roces, A. T. Quitain, and T. Kida, 'Process Optimization of Carbon Dioxide Adsorption using Nitrogen-Functionalized Graphene Oxide via Response Surface Methodology Approach'.

DOI: 10.22146/ajche.49559

Google Scholar

[8] D. Pharma and N. Mahmood Aljamali, 'ISSN 0975-413X CODEN (USA): PCHHAX Synthesis and Biological Study of Hetero (Atoms and Cycles) Compounds', 2016. [Online]. Available: www.derpharmachemica.com

Google Scholar

[9] H. I. Park et al., 'One-pot synthesis of novel porous carbon adsorbents derived from poly vinyl chloride for high methane adsorption uptake', Chemical Engineering Journal, vol. 440, Jul. 2022.

DOI: 10.1016/j.cej.2022.135867

Google Scholar

[10] F. O. Okello et al., 'Towards estimation and mechanism of CO2 adsorption on zeolite adsorbents using molecular simulations and machine learning', Mater Today Commun, vol. 36, p.106594, Aug. 2023.

DOI: 10.1016/j.mtcomm.2023.106594

Google Scholar

[11] P. H. Chang, C. Y. Chen, R. Mukhopadhyay, W. Chen, Y. M. Tzou, and B. Sarkar, 'Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water', J Colloid Interface Sci, vol. 623, p.627–636, Oct. 2022.

DOI: 10.1016/j.jcis.2022.05.050

Google Scholar

[12] S. Wang, X. Qiu, Y. Chen, and S. Chen, 'Preparation and structure tuning of CO2 adsorbent based on in-situ amine-functionalized hierarchical porous polymer', Microporous and Mesoporous Materials, vol. 330, Jan. 2022.

DOI: 10.1016/j.micromeso.2021.111585

Google Scholar

[13] S. Silviana, D. D. Anggoro, C. A. Salsabila, and K. Aprilio, 'Utilization of geothermal waste as a silica adsorbent for biodiesel purification', Korean Journal of Chemical Engineering, vol. 38, no. 10, p.2091–2105, Oct. 2021.

DOI: 10.1007/s11814-021-0827-z

Google Scholar

[14] S. Silviana, A. Noorpasha, M. M. Rahman, C. A. Salsabila, and A. N. Sa'adah, 'Preparation and kinetics study of silica adsorbent derived from geothermal waste impregnated with chitosan for gas separation of CO2 and CH4', Biofuels, vol. 14, no. 3, p.223–233, 2023.

DOI: 10.1080/17597269.2022.2129711

Google Scholar

[15] Y. Kong, X. Shen, S. Cui, and M. Fan, 'Development of monolithic adsorbent via polymeric sol-gel process for low-concentration CO2 capture', Appl Energy, vol. 147, p.308–317, Jun. 2015.

DOI: 10.1016/j.apenergy.2015.03.011

Google Scholar

[16] T. Alhajeri, M. Abu Zahra, A. AlHajaj, and D. V. Quang, 'Preparation and Evaluation of Precipitated Silica for CO2 Removal', SSRN Electronic Journal, 2021.

DOI: 10.2139/ssrn.3818684

Google Scholar

[17] S. N. A. Jenie, A. Ghaisani, Y. P. Ningrum, A. Kristiani, F. Aulia, and H. T. M. B. Petrus, 'Preparation of silica nanoparticles from geothermal sludge via sol-gel method', in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2018.

DOI: 10.1063/1.5064968

Google Scholar

[18] F. Lou, A. Zhang, G. Zhang, L. Ren, X. Guo, and C. Song, 'Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure', Appl Energy, vol. 264, Apr. 2020.

DOI: 10.1016/j.apenergy.2020.114637

Google Scholar

[19] E. Ahmadi, N. Dehghannejad, S. Hashemikia, M. Ghasemnejad, and H. Tabebordbar, 'Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery', Drug Deliv, vol. 21, no. 3, p.164–172, 2014.

DOI: 10.3109/10717544.2013.838715

Google Scholar

[20] F. Qu, G. Zhu, S. Huang, S. Li, and S. Qiu, 'Effective controlled release of captopril by silylation of mesoporous MCM-41', ChemPhysChem, vol. 7, no. 2, p.400–406, Feb. 2006.

DOI: 10.1002/cphc.200500294

Google Scholar

[21] C. Urata et al., 'Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks', J Am Chem Soc, vol. 133, no. 21, p.8102–8105, Jun. 2011.

DOI: 10.1021/ja201779d

Google Scholar

[22] K. C. W. Wu and Y. Yamauchi, 'Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications', Journal of Materials Chemistry, vol. 22, no. 4. p.1251–1256, Jan. 28, 2012.

DOI: 10.1039/c1jm13811a

Google Scholar

[23] Y. Yang et al., 'Fabrication of autofluorescent protein coated mesoporous silica nanoparticles for biological application', Chemical Communications, vol. 47, no. 44, p.12167–12169, Nov. 2011.

DOI: 10.1039/c1cc16004d

Google Scholar

[24] R. Serrano, P. Cuesta Zapata, E. Gonzo, and M. Parentis, 'AMINE-GRAFTED MESOPOROUS SILICA FOR CO2 CAPTURE', 2020.

DOI: 10.52292/j.laar.2020.138

Google Scholar

[25] B. Saha, D. Singha, T. Das, and M. Nandi, 'Tris(4-formyl phenyl)amine functionalized mesoporous silica for selective sensing of Al3+ and its separation', Inorganica Chim Acta, vol. 550, May 2023.

DOI: 10.1016/j.ica.2023.121455

Google Scholar

[26] A. Timin et al., 'Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl-2-pyrrolidone) as a potential adsorbent for bilirubin removal', Mater Chem Phys, vol. 147, no. 3, p.673–683, Oct. 2014.

DOI: 10.1016/j.matchemphys.2014.06.006

Google Scholar

[27] A. K. Thakur et al., 'Polyethylenimine-modified mesoporous silica adsorbent for simultaneous removal of Cd(II) and Ni(II) from aqueous solution', Journal of Industrial and Engineering Chemistry, vol. 49, p.133–144, May 2017.

DOI: 10.1016/j.jiec.2017.01.019

Google Scholar

[28] W. Henao, L. Y. Jaramillo, D. López, M. Romero-Sáez, and R. Buitrago-Sierra, 'Insights into the CO2capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash', J Environ Chem Eng, vol. 8, no. 5, Oct. 2020.

DOI: 10.1016/j.jece.2020.104362

Google Scholar

[29] J. Gao, D. Zhang, Y. Wang, W. Shan, and Y. Xiong, 'Ethanolamine modified ordered mesoporous silica KIT-6: One-pot and rapid microwave synthesis, and efficient recovery for rhenium(VII)', Colloids Surf A Physicochem Eng Asp, vol. 656, Jan. 2023.

DOI: 10.1016/j.colsurfa.2022.130337

Google Scholar

[30] Y. Fu, Y. Sun, Z. Chen, S. Ying, J. Wang, and J. Hu, 'Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent', Science of the Total Environment, vol. 691, p.664–674, Nov. 2019.

DOI: 10.1016/j.scitotenv.2019.07.153

Google Scholar

[31] B. Li, Y. Chen, Z. Yang, X. Ji, and X. Lu, 'Thermodynamic study on carbon dioxide absorption in aqueous solutions of choline-based amino acid ionic liquids', Sep Purif Technol, no. 5, p.128–138, 2019.

DOI: 10.1016/j.seppur.2018.01.058

Google Scholar

[32] K. Smith et al., 'Pilot plant results for a precipitating potassium carbonate solvent absorption process promoted with glycine for enhanced CO2 capture', Fuel Processing Technology, vol. 135, p.60–65, 2015.

DOI: 10.1016/j.fuproc.2014.10.013

Google Scholar

[33] G. Qi et al., 'Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping', Appl Energy, vol. 209, no. June 2017, p.180–189, 2018.

DOI: 10.1016/j.apenergy.2017.10.083

Google Scholar

[34] C. Song et al., 'Intensification of a novel absorption-microalgae hybrid CO2 utilization process via fed-batch mode optimization', International Journal of Greenhouse Gas Control, vol. 82, no. September 2018, p.1–7, 2019.

DOI: 10.1016/j.ijggc.2019.01.001

Google Scholar

[35] Y. Xu, B. Jin, X. Chen, and Y. Zhao, 'Performance of CO2 absorption in a spray tower using blended ammonia and piperazine solution: Experimental studies and comparisons', International Journal of Greenhouse Gas Control, vol. 82, no. January, p.152–161, 2019.

DOI: 10.1016/j.ijggc.2019.01.008

Google Scholar

[36] Y. Xu, B. Jin, Y. Zhao, E. J. Hu, X. Chen, and X. Li, 'Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry', Appl Energy, vol. 211, no. June 2017, p.318–333, 2018.

DOI: 10.1016/j.apenergy.2017.11.054

Google Scholar

[37] K. Rahimi, S. Riahi, and M. Abbasi, 'Effect of host fluid and hydrophilicity of multi-walled carbon nanotubes on stability and CO2 absorption of amine-based and water-based nanofluids', J Environ Chem Eng, vol. 8, no. 1, p.103580, 2020.

DOI: 10.1016/j.jece.2019.103580

Google Scholar

[38] W. Y. Lee, S. Y. Park, K. B. Lee, and S. C. Nam, 'Simultaneous Removal of CO2 and H2S from Biogas by Blending Amine Absorbents: A Performance Comparison Study', Energy and Fuels, vol. 34, no. 2, p.1992–2000, 2020.

DOI: 10.1021/acs.energyfuels.9b03342

Google Scholar

[39] W. Luo et al., 'Study on the reusability of kaolin as catalysts for catalytic pyrolysis of low-density polyethylene', Fuel, vol. 302, no. January, p.121164, 2021.

DOI: 10.1016/j.fuel.2021.121164

Google Scholar

[40] M. Leimbrink et al., 'Energy-efficient solvent regeneration in enzymatic reactive absorption for carbon dioxide capture', Appl Energy, vol. 208, no. June, p.263–276, 2017.

DOI: 10.1016/j.apenergy.2017.10.042

Google Scholar

[41] M. Clausse, J. Merel, and F. Meunier, 'Numerical parametric study on CO2 capture by indirect thermal swing adsorption', International Journal of Greenhouse Gas Control, vol. 5, no. 5, p.1206–1213, 2011.

DOI: 10.1016/j.ijggc.2011.05.036

Google Scholar

[42] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, 'An overview of current status of carbon dioxide capture and storage technologies', Renewable and Sustainable Energy Reviews, vol. 39, p.426–443, 2014.

DOI: 10.1016/j.rser.2014.07.093

Google Scholar

[43] R. L. S. Canevesi, K. A. Andreassen, E. A. Da Silva, C. E. Borba, and C. A. Grande, 'Pressure Swing Adsorption for Biogas Upgrading with Carbon Molecular Sieve', Ind Eng Chem Res, vol. 57, no. 23, p.8057–8067, 2018.

DOI: 10.1021/acs.iecr.8b00996

Google Scholar

[44] P. Hemalatha, M. Bhagiyalakshmi, M. Ganesh, M. Palanichamy, V. Murugesan, and H. T. Jang, 'Role of ceria in CO 2 adsorption on NaZSM-5 synthesized using rice husk ash', Journal of Industrial and Engineering Chemistry, vol. 18, no. 1, p.260–265, 2012.

DOI: 10.1016/j.jiec.2011.11.046

Google Scholar

[45] A. E. Ogungbenro, D. V. Quang, K. A. Al-Ali, L. F. Vega, and M. R. M. Abu-Zahra, 'Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption', J Environ Chem Eng, vol. 8, no. 5, p.104257, 2020.

DOI: 10.1016/j.jece.2020.104257

Google Scholar

[46] D. Wawrzyńczak, M. Panowski, and I. Majchrzak-Kucęba, 'Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon', Energy, vol. 180, p.787–796, 2019.

DOI: 10.1016/j.energy.2019.05.068

Google Scholar

[47] Y. Sha, J. Lou, S. Bai, D. Wu, B. Liu, and Y. Ling, 'Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture', Mater Res Bull, vol. 64, p.327–332, 2015.

DOI: 10.1016/j.materresbull.2015.01.015

Google Scholar

[48] C. Gebald, J. A. Wurzbacher, A. Borgschulte, T. Zimmermann, and A. Steinfeld, 'Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose', Environ Sci Technol, vol. 48, no. 4, p.2497–2504, 2014.

DOI: 10.1021/es404430g

Google Scholar

[49] C. Chen et al., 'Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites', J Colloid Interface Sci, vol. 521, p.91–101, 2018.

DOI: 10.1016/j.jcis.2018.03.029

Google Scholar

[50] S. Gaikwad, Y. Kim, R. Gaikwad, and S. Han, 'Enhanced CO2capture capacity of amine-functionalized MOF-177 metal organic framework', J Environ Chem Eng, vol. 9, no. 4, p.105523, 2021.

DOI: 10.1016/j.jece.2021.105523

Google Scholar

[51] B. Dziejarski, R. Krzyżyńska, and K. Andersson, 'Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment', Fuel, vol. 342, no. December 2022, 2023.

DOI: 10.1016/j.fuel.2023.127776

Google Scholar

[52] P. Hemalatha, M. Bhagiyalakshmi, M. Ganesh, M. Palanichamy, V. Murugesan, and H. T. Jang, 'Role of ceria in CO 2 adsorption on NaZSM-5 synthesized using rice husk ash', Journal of Industrial and Engineering Chemistry, vol. 18, no. 1, p.260–265, Jan. 2012.

DOI: 10.1016/j.jiec.2011.11.046

Google Scholar

[53] A. E. Ogungbenro, D. V. Quang, K. A. Al-Ali, L. F. Vega, and M. R. M. Abu-Zahra, 'Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption', J Environ Chem Eng, vol. 8, no. 5, Oct. 2020.

DOI: 10.1016/j.jece.2020.104257

Google Scholar

[54] D. Wawrzyńczak, M. Panowski, and I. Majchrzak-Kucęba, 'Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon', Energy, vol. 180, p.787–796, Aug. 2019.

DOI: 10.1016/j.energy.2019.05.068

Google Scholar

[55] Y. Sha, J. Lou, S. Bai, D. Wu, B. Liu, and Y. Ling, 'Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture', Mater Res Bull, vol. 64, p.327–332, 2015.

DOI: 10.1016/j.materresbull.2015.01.015

Google Scholar

[56] C. Gebald, J. A. Wurzbacher, A. Borgschulte, T. Zimmermann, and A. Steinfeld, 'Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose', Environ Sci Technol, vol. 48, no. 4, p.2497–2504, Feb. 2014.

DOI: 10.1021/es404430g

Google Scholar

[57] Y. CHEN, P. NING, Y. XIE, Y. CHEN, H. SUN, and Z. LIU, 'Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption', Chin J Chem Eng, vol. 16, no. 5, p.715–721, Oct. 2008.

DOI: 10.1016/S1004-9541(08)60145-7

Google Scholar

[58] Y. H. Zhang et al., 'A Zn(II)-based pillar-layered metal–organic framework: Synthesis, structure, and CO2 selective adsorption', Polyhedron, vol. 158, p.283–289, Jan. 2019.

DOI: 10.1016/j.poly.2018.10.067

Google Scholar

[59] S. Gaikwad, Y. Kim, R. Gaikwad, and S. Han, 'Enhanced CO2capture capacity of amine-functionalized MOF-177 metal organic framework', J Environ Chem Eng, vol. 9, no. 4, Aug. 2021.

DOI: 10.1016/j.jece.2021.105523

Google Scholar

[60] M. Clausse, J. Merel, and F. Meunier, 'Numerical parametric study on CO2 capture by indirect thermal swing adsorption', International Journal of Greenhouse Gas Control, vol. 5, no. 5, p.1206–1213, 2011.

DOI: 10.1016/j.ijggc.2011.05.036

Google Scholar

[61] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, 'An overview of current status of carbon dioxide capture and storage technologies', Renewable and Sustainable Energy Reviews, vol. 39. Elsevier Ltd, p.426–443, 2014.

DOI: 10.1016/j.rser.2014.07.093

Google Scholar

[62] R. L. S. Canevesi, K. A. Andreassen, E. A. Da Silva, C. E. Borba, and C. A. Grande, 'Pressure Swing Adsorption for Biogas Upgrading with Carbon Molecular Sieve', Ind Eng Chem Res, vol. 57, no. 23, p.8057–8067, Jun. 2018.

DOI: 10.1021/acs.iecr.8b00996

Google Scholar

[63] B. Dziejarski, R. Krzyżyńska, and K. Andersson, 'Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment', Fuel, vol. 342. Elsevier Ltd, Jun. 15, 2023.

DOI: 10.1016/j.fuel.2023.127776

Google Scholar

[64] G. Zarca, I. Ortiz, and A. Urtiaga, 'Novel solvents based on thiocyanate ionic liquids doped with copper(I) with enhanced equilibrium selectivity for carbon monoxide separation from light gases', Sep Purif Technol, vol. 196, p.47–56, 2018.

DOI: 10.1016/j.seppur.2017.06.069

Google Scholar

[65] N. N. Dutta and G. S. Patil, 'Developments in CO separation', Gas Separation and Purification, vol. 9, no. 4, p.277–283, 1995.

DOI: 10.1016/0950-4214(95)00011-Y

Google Scholar

[66] Y. CHEN, P. NING, Y. XIE, Y. CHEN, H. SUN, and Z. LIU, 'Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption', Chin J Chem Eng, vol. 16, no. 5, p.715–721, 2008.

DOI: 10.1016/S1004-9541(08)60145-7

Google Scholar

[67] N. N. Dutta and G. S. Patil, 'Developments in CO separation', Gas Separation and Purification, vol. 9, no. 4, p.277–283, 1995.

DOI: 10.1016/0950-4214(95)00011-Y

Google Scholar

[68] R. W. Baker and B. T. Low, 'Gas separation membrane materials: A perspective', Macromolecules, vol. 47, no. 20, p.6999–7013, Oct. 2014.

DOI: 10.1021/ma501488s

Google Scholar

[69] S. Wilbur et al., 'TOXICOLOGICAL PROFILE FOR CARBON MONOXIDE', 2012.

Google Scholar

[70] E. F. Mohamed, A. El-Mekawy, S. A. S. Ahmed, and N. A. Fathy, 'High Adsorption Capacity of Ammonia Gas Pollutant Using Adsorbents of Carbon Composites', Arab J Sci Eng, 2023.

DOI: 10.1007/s13369-023-07987-3

Google Scholar

[71] T. Zhang, L. Ding, H. Ren, and X. Xiong, 'Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology', Water Res, vol. 43, no. 20, p.5209–5215, 2009.

DOI: 10.1016/j.watres.2009.08.054

Google Scholar

[72] Y. N. Chen, C. H. Liu, J. X. Nie, X. P. Luo, and D. S. Wang, 'Chemical precipitation and biosorption treating landfill leachate to remove ammonium-nitrogen', Clean Technol Environ Policy, vol. 15, no. 2, p.395–399, 2013.

DOI: 10.1007/s10098-012-0511-4

Google Scholar

[73] A. Folino, D. A. Zema, and P. S. Calabrò, 'Environmental and economic sustainability of swine wastewater treatments using ammonia stripping and anaerobic digestion: A short review', Sustainability (Switzerland), vol. 12, no. 12. MDPI, Jun. 01, 2020.

DOI: 10.3390/su12124971

Google Scholar

[74] P. Seruga, M. Krzywonos, and M. Wilk, 'Treatment of By-Products Generated from Anaerobic Digestion of Municipal Solid Waste', Waste Biomass Valorization, vol. 11, no. 9, p.4933–4940, Sep. 2020.

DOI: 10.1007/s12649-019-00831-6

Google Scholar

[75] L. Li, J. Yao, X. Fang, Y. Huang, and Y. Mu, 'Electrolytic ammonia removal and current efficiency by a vermiculite-packed electrochemical reactor', Sci Rep, vol. 7, Jan. 2017.

DOI: 10.1038/srep41030

Google Scholar

[76] J. Yao et al., 'Process optimization of electrochemical oxidation of ammonia to nitrogen for actual dyeing wastewater treatment', Int J Environ Res Public Health, vol. 16, no. 16, Aug. 2019.

DOI: 10.3390/ijerph16162931

Google Scholar

[77] Y. Zhou, Y. Zhu, J. Zhu, C. Li, and G. Chen, 'A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes', International Journal of Environmental Research and Public Health, vol. 20, no. 4. MDPI, Feb. 01, 2023.

DOI: 10.3390/ijerph20043429

Google Scholar

[78] Y. Elsayed, M. Seredych, A. Dallas, and T. J. Bandosz, 'Desulfurization of air at high and low H2S concentrations', Chemical Engineering Journal, vol. 155, no. 3, p.594–602, Dec. 2009.

DOI: 10.1016/j.cej.2009.08.010

Google Scholar

[79] A. Alonso-Tellez, D. Robert, N. Keller, and V. Keller, 'A parametric study of the UV-A photocatalytic oxidation of H 2S over TiO 2', Appl Catal B, vol. 115–116, p.209–218, Apr. 2012.

DOI: 10.1016/j.apcatb.2011.12.014

Google Scholar

[80] B. D. Bhide, A. Voskericyan, and S. A. Stem, 'journalof MEMBRANE SCIENCE ELSEVIER Hybrid processes for the removal of acid gases from natural gas', 1998.

DOI: 10.1016/s0376-7388(97)00257-3

Google Scholar

[81] L. Du, H. Li, L. Li, J. Xu, and Y. Li, 'Investigation of selective desulfurization performance of sterically hindered amines', Pet Sci Technol, vol. 37, no. 1, p.56–60, Jan. 2019.

DOI: 10.1080/10916466.2018.1490758

Google Scholar

[82] R. Zhu, S. Li, X. Bao, and É. Dumont, 'Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms', Sci Rep, vol. 7, Feb. 2017.

DOI: 10.1038/srep42241

Google Scholar

[83] Y. Yu, T. Zhang, L. Zheng, and J. Yu, 'Photocatalytic degradation of hydrogen sulfide using TiO2 film under microwave electrodeless discharge lamp irradiation', Chemical Engineering Journal, vol. 225, p.9–15, Jun. 2013.

DOI: 10.1016/j.cej.2013.03.032

Google Scholar

[84] T. J. Bandosz, 'On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures', J Colloid Interface Sci, vol. 246, no. 1, p.1–20, 2002.

DOI: 10.1006/jcis.2001.7952

Google Scholar

[85] M. Pasichnyk et al., 'Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases', Separation and Purification Technology, vol. 323. Elsevier B.V., Oct. 15, 2023.

DOI: 10.1016/j.seppur.2023.124436

Google Scholar

[86] L. Tao et al., 'Integration for sulfur dioxide removal from smelting flue gas with copper tailings utilization and copper recovery via absorption-synchronous leaching and reduction', Environ Technol Innov, vol. 28, Nov. 2022.

DOI: 10.1016/j.eti.2022.102931

Google Scholar

[87] I. Dahlan, A. R. Mohamed, A. H. Kamaruddin, and K. T. Lee, 'Dry SO2 removal process using calcium/siliceous-based sorbents: Deactivation kinetics based on breakthrough curves', Chem Eng Technol, vol. 30, no. 5, p.663–666, May 2007.

DOI: 10.1002/ceat.200600336

Google Scholar

[88] R. Zafari, F. G. Mendonça, R. Tom Baker, and C. Fauteux-Lefebvre, 'Efficient SO2 capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent', Sep Purif Technol, vol. 308, Mar. 2023.

DOI: 10.1016/j.seppur.2022.122917

Google Scholar

[89] F. L. Braghiroli, H. Bouafif, and A. Koubaa, 'Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues', Ind Crops Prod, vol. 138, Oct. 2019.

DOI: 10.1016/j.indcrop.2019.06.019

Google Scholar

[90] A. Navaratne, N. Priyantha, A. N. Navaratne, and T. P. K. Kulasooriya, 'Adsorption of Heavy Metal Ions on Rice Husk: Isotherm Modeling and Error Analysis Thanuja Kulasooriya Adsorption of Heavy Metal Ions on Rice Husk: Isotherm Modeling and Error Analysis', [Online]. Available: www.cafetinnova.org

DOI: 10.4038/jnsfsr.v46i2.8413

Google Scholar

[91] P. A. Dub and J. C. Gordon, 'The role of the metal-bound N–H functionality in Noyori-type molecular catalysts', Nature Reviews Chemistry, vol. 2, no. 12. Nature Publishing Group, p.396–408, Dec. 01, 2018.

DOI: 10.1038/s41570-018-0049-z

Google Scholar

[92] S. Kompiang Wirawan, I. Novia Indrajati, W. Budi Sediawan, P. Mulyono, and D. Creaser, 'CO2 Adsorption on HZSM-5 Zeolite : Mass Transport Study in A Packed Bed Adsorber', 2008.

Google Scholar

[93] K. Kawamoto, 'Adsorption characteristics of the carbonaceous adsorbents for organic compounds in a model exhaust gas from thermal treatment processing', J Air Waste Manage Assoc, vol. 72, no. 5, p.463–473, 2022.

DOI: 10.1080/10962247.2022.2053244

Google Scholar

[94] P. Taba, R. D. P. Mustafa, L. M. Ramang, and A. H. Kasim, 'Adsorption of Pb2+ on Thiol-functionalized Mesoporous Silica, SH-MCM-48', in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2018.

DOI: 10.1088/1742-6596/979/1/012058

Google Scholar

[95] R. Girimonte, F. Testa, M. Gallo, R. Buscieti, G. Leone, and B. Formisani, 'Adsorption of CO2 on amine-modified silica particles in a confined-fluidized bed', Processes, vol. 8, no. 12, p.1–16, Dec. 2020.

DOI: 10.3390/pr8121531

Google Scholar

[96] S. Ahsan, A. Ayub, D. Meeroff, and M. Jahandar Lashaki, 'A comprehensive comparison of zeolite-5A molecular sieves and amine-grafted SBA-15 silica for cyclic adsorption-desorption of carbon dioxide in enclosed environments', Chemical Engineering Journal, vol. 437, Jun. 2022.

DOI: 10.1016/j.cej.2022.135139

Google Scholar

[97] S. Rita, R. Eti, and K. Tetty, 'Aminopropyltrimethoxysilane (APTMS) modified nano silica as heavy metal iron (Fe) adsorbents in peat water', in AIP Conference Proceedings, American Institute of Physics Inc., Sep. 2018.

DOI: 10.1063/1.5054567

Google Scholar

[98] N. A. Abdul Razak, N. H. Othman, M. S. Mat Shayuti, A. Jumahat, N. Sapiai, and W. J. Lau, 'Agricultural and industrial waste-derived mesoporous silica nanoparticles: A review on chemical synthesis route', Journal of Environmental Chemical Engineering, vol. 10, no. 2. Elsevier Ltd, Apr. 01, 2022.

DOI: 10.1016/j.jece.2022.107322

Google Scholar

[99] G. Yang, Y. Deng, H. Ding, Z. Lin, Y. Shao, and Y. Wang, 'A facile approach to synthesize MCM-41 mesoporous materials from iron ore tailing: Influence of the synthesis conditions on the structural properties', Appl Clay Sci, vol. 111, p.61–66, Jul. 2015.

DOI: 10.1016/j.clay.2015.04.005

Google Scholar

[100] X. Han, Y. Wang, N. Zhang, J. Meng, Y. Li, and J. Liang, 'Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue', Colloids Surf A Physicochem Eng Asp, vol. 617, May 2021.

DOI: 10.1016/j.colsurfa.2021.126391

Google Scholar

[101] S. El-Sayed and M. Khairy, 'Preparation and Characterization of Fuel Pellets from Corn Cob and Wheat Dust with Binder', Iranica Journal of Energy and Environment, 2017.

DOI: 10.5829/idosi.ijee.2017.08.01.13

Google Scholar

[102] L. P. Santi, D. N. Kalbuadi, and D. H. Goenadi, 'Empty Fruit Bunches as Potential Source for Biosilica Fertilizer for Oil Palm', J Trop Biodivers Biotechnol, vol. 4, no. 3, p.90–96, 2019.

DOI: 10.22146/jtbb.38749

Google Scholar

[103] D. Dhaneswara, J. F. Fatriansyah, F. W. Situmorang, and A. N. Haqoh, 'Synthesis of Amorphous Silica from Rice Husk Ash: Comparing HCl and CH3COOH Acidification Methods and Various Alkaline Concentrations', International Journal of Technology, vol. 11, no. 1, p.200–208, Jan. 2020.

DOI: 10.14716/ijtech.v11i1.3335

Google Scholar

[104] T. Nochaiya, T. Suriwong, and P. Julphunthong, 'Acidic corrosion-abrasion resistance of concrete containing fly ash and silica fume for use as concrete floors in pig farm', Case Studies in Construction Materials, vol. 16, Jun. 2022.

DOI: 10.1016/j.cscm.2022.e01010

Google Scholar

[105] R. Vinai and M. Soutsos, 'Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders', Cem Concr Res, vol. 116, p.45–56, Feb. 2019.

DOI: 10.1016/j.cemconres.2018.11.008

Google Scholar

[106] E. Bonet-Martínez, P. García-Cobo, L. Pérez-Villarejo, E. Castro, and D. Eliche-Quesada, 'Effect of olive-pine bottom ash on properties of geopolymers based on metakaolin', Materials, vol. 13, no. 4, Feb. 2020.

DOI: 10.3390/ma13040901

Google Scholar

[107] E. A. Okoronkwo, P. E. Imoisili, S. A. Olubayode, and S. O. O. Olusunle, 'Development of Silica Nanoparticle from Corn Cob Ash', Adv Nanopart, vol. 05, no. 02, p.135–139, 2016.

DOI: 10.4236/anp.2016.52015

Google Scholar

[108] N. A. Rahman, I. Widhiana, S. R. Juliastuti, and H. Setyawan, 'Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source', Colloids Surf A Physicochem Eng Asp, vol. 476, p.1–7, Jul. 2015.

DOI: 10.1016/j.colsurfa.2015.03.018

Google Scholar

[109] S. Silviana et al., 'Synthesis of silica-cellulose aerogel derived from bagasse through impregnation and ambient pressure drying methods as thermal insulator', in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Jan. 2022.

DOI: 10.1088/1755-1315/963/1/012027

Google Scholar

[110] P. E. Imoisili, K. O. Ukoba, and T. C. Jen, 'Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol-gel', Journal of Materials Research and Technology, vol. 9, no. 1, p.307–313, Jan. 2020.

DOI: 10.1016/j.jmrt.2019.10.059

Google Scholar

[111] Ł. Gołek, 'New insights into the use of glass cullet in cement composites - Long term examinations', Cem Concr Compos, vol. 133, Oct. 2022.

DOI: 10.1016/j.cemconcomp.2022.104673

Google Scholar

[112] A. B. D. Nandiyanto, T. Rahman, M. A. Fadhlulloh, A. G. Abdullah, I. Hamidah, and B. Mulyanti, 'Synthesis of silica particles from rice straw waste using a simple extraction method', in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, May 2016.

DOI: 10.1088/1757-899X/128/1/012040

Google Scholar

[113] F. A. Olutoge and O. M. Oladunmoye, 'Bamboo Leaf Ash as Supplementary Cementitious Material', American Journal of Engineering Research, vol. 6, no. 6, p.1–8, 2017, [Online]. Available: www.ajer.org

Google Scholar

[114] S. Silviana, F. Dalanta, and G. J. Sanyoto, 'Utilization of bamboo leaf silica as a superhydrophobic coating using trimethylchlorosilane as a surface modification agent', in Journal of Physics: Conference Series, IOP Publishing Ltd, Jul. 2021.

DOI: 10.1088/1742-6596/1943/1/012180

Google Scholar

[115] S. Silviana and W. J. Bayu, 'Silicon Conversion from Bamboo Leaf Silica by Magnesiothermic Reduction for Development of Li-ion Baterry Anode', in MATEC Web of Conferences, EDP Sciences, Mar. 2018.

DOI: 10.1051/matecconf/201815605021

Google Scholar

[116] R. A. M. Figueiredo, P. R. G. Brandão, M. Soutsos, A. B. Henriques, A. Fourie, and D. B. Mazzinghy, 'Producing sodium silicate powder from iron ore tailings for use as an activator in one-part geopolymer binders', Mater Lett, vol. 288, Apr. 2021.

DOI: 10.1016/j.matlet.2021.129333

Google Scholar

[117] S. Silviana, A. Noorpasha, and M. M. Rahman, 'Preliminary study of chitosan coating silica derived from geotermal solid waste', Civil Engineering and Architecture, vol. 8, no. 3, p.281–288, Jun. 2020.

DOI: 10.13189/cea.2020.080311

Google Scholar

[118] S. Silviana, G. J. Sanyoto, and A. Darmawan, 'Preparation of geothermal silica glass coating film through multi-factor optimization', J Teknol, vol. 83, no. 4, p.41–49, 2021.

DOI: 10.11113/jurnalteknologi.v83.16377

Google Scholar

[119] S. Silviana, A. Darmawan, A. Subagio, and F. Dalanta, 'Statistical approaching for superhydrophobic coating preparation using silica derived from geothermal solid waste', ASEAN Journal of Chemical Engineering, vol. 19, no. 2, p.91–99, 2019.

DOI: 10.22146/ajche.51178

Google Scholar

[120] S. Silviana, A. Darmawan, A. A. Janitra, A. Ma'ruf, and I. Triesty, 'Synthesized Silica Mesoporous from Silica Geothermal Assisted with CTAB and Modified by APTMS', International Journal of Emerging Trends in Engineering Research, vol. 8, no. 8, p.4854–4860, Aug. 2020.

DOI: 10.30534/ijeter/2020/125882020

Google Scholar

[121] S. Silviana, G. J. Sanyoto, A. Darmawan, and H. Sutanto, 'Geothermal silica waste as sustainable amorphous silica source for the synthesis of silica xerogels', Rasayan Journal of Chemistry, vol. 13, no. 3, p.1692–1700, Jul. 2020.

DOI: 10.31788/RJC.2020.1335701

Google Scholar

[122] S. Silviana, E. A. P. P. Sagala, S. E. Sari, and C. T. M. Siagian, 'Preparation of mesoporous silica derived from geothermal silica as precursor with a surfactant of cethyltrimethylammonium bromide', in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2019.

DOI: 10.1063/1.5141683

Google Scholar

[123] S. Silviana, A. A. Janitra, A. N. Sa'Adah, and F. Dalanta, 'Synthesis of Aminopropyl-Functionalized Mesoporous Silica Derived from Geothermal Silica for an Effective Slow-Release Urea Carrier', Ind Eng Chem Res, vol. 61, no. 26, p.9283–9299, Jul. 2022.

DOI: 10.1021/acs.iecr.2c00424

Google Scholar

[124] S. Silviana, A. G. Hasega, A. R. Nur Hanifah, and A. N. Saadah, 'Synthesis of Silica Coating Derived from Geothermal Solid Waste Modified with 3-Aminopropyl Triethoxysilane (APTES) and Silver Nano Particles (AgNPs)', Evergreen, vol. 9, no. 4, p.1224–1230, Dec. 2022.

DOI: 10.5109/6625733

Google Scholar

[125] S. Silviana, A. Ma'ruf, and F. Dalanta, 'Silicone for Lithium-Ion Battery Anode Derived from Geothermal Waste Silica Through Magnesiothermic Reduction and Double Stages in Acid Leaching', Defect and Diffusion Forum, vol. 417, p.191–206, 2022.

DOI: 10.4028/p-2y9z6c

Google Scholar

[126] S. Silviana, J. Rahmaningrum, F. H. Setyanto, A. R. Adina, R. A. Yahya, and M. D. Fadholi, 'Hydrophobic-superoleophilic coating derived from silica with hexamethyldisilazane and methyltrimethoxysilane applied as separator cotton of oil water', in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023.

DOI: 10.1063/5.0113702

Google Scholar

[127] A. A. Azmi and M. A. A. Aziz, 'Mesoporous adsorbent for CO 2 capture application under mild condition: A review', Journal of Environmental Chemical Engineering, vol. 7, no. 2. Elsevier Ltd, Apr. 01, 2019.

DOI: 10.1016/j.jece.2019.103022

Google Scholar

[128] V. Harish et al., 'Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods', Nanomaterials, vol. 12, no. 18. MDPI, Sep. 01, 2022.

DOI: 10.3390/nano12183226

Google Scholar

[129] D. Zong-Da, C. Yuan-Yuan, and Y. Cheng-Xiong, 'Synthesis of silica amino-functionalized microporous organic network composites for efficient on-line solid phase extraction of trace phenols from water', J Chromatogr A, vol. 1616, Apr. 2020.

DOI: 10.1016/j.chroma.2019.460791

Google Scholar

[130] X. Jiang, H. Zhang, M. Yue, S. Zhang, Y. Li, and W. Xu, 'Synthesis of organic hybrid super-microporous silicas as an adsorbent for dyes removal from water', Microporous and Mesoporous Materials, vol. 288, Nov. 2019.

DOI: 10.1016/j.micromeso.2019.109598

Google Scholar

[131] M. Tan et al., 'Fly ash-derived mesoporous silica with large pore volume for augmented CO2 capture', Fuel, vol. 351, Nov. 2023.

DOI: 10.1016/j.fuel.2023.128874

Google Scholar

[132] C. Zhou et al., 'Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash', J Taiwan Inst Chem Eng, vol. 52, p.147–157, Jul. 2015.

DOI: 10.1016/j.jtice.2015.02.014

Google Scholar

[133] Y. S. Cho, S. Y. Choi, Y. K. Kim, and G. R. Yi, 'Bulk synthesis of ordered macroporous silica particles for superhydrophobic coatings', J Colloid Interface Sci, vol. 386, no. 1, p.88–98, Nov. 2012.

DOI: 10.1016/j.jcis.2012.07.052

Google Scholar

[134] K. Min, W. Choi, and M. Choi, 'Macroporous Silica with Thick Framework for Steam-Stable and High-Performance Poly(ethyleneimine)/Silica CO2 Adsorbent', ChemSusChem, vol. 10, no. 11, p.2518–2526, Jun. 2017.

DOI: 10.1002/cssc.201700398

Google Scholar

[135] K. O. Iwuozor, J. O. Ighalo, E. Chizitere Emenike, C. Adaobi Igwegbe, and A. G. Adeniyi, 'Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption?', J. Chem. Lett, vol. 2, p.188–198, 2021.

DOI: 10.21203/rs.3.rs-777328/v1

Google Scholar

[136] D. H. Carrales-Alvarado, I. Rodríguez-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza, and D. E. Villela-Martínez, 'Effect of surface area and physical–chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution', Chemical Engineering Journal, vol. 402, Dec. 2020.

DOI: 10.1016/j.cej.2020.126155

Google Scholar

[137] S. M. Mane, C. J. Raorane, and J. C. Shin, 'Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto–Amine Groups for Selective Adsorption of Cu2+ Ion from Aqueous Solution', Nanomaterials, vol. 12, no. 18, Sep. 2022.

DOI: 10.3390/nano12183232

Google Scholar

[138] W. Huang et al., 'Influence of surfactant on CO2 adsorption of amine-functionalized MCM-41', Environmental Technology (United Kingdom), vol. 43, no. 28, p.4545–4553, 2022.

DOI: 10.1080/09593330.2021.1958012

Google Scholar

[139] Z. Gao and I. Zharov, 'Large pore mesoporous silica nanoparticles by templating with a nonsurfactant molecule, tannic acid', Chemistry of Materials, vol. 26, no. 6, p.2030–2037, Mar. 2014.

DOI: 10.1021/cm4039945

Google Scholar

[140] Q. Zhao, J. Wang, Y. Zhou, J. Huang, H. Cai, and H. B. Liu, 'Dual function naphthalimide modified mesoporous silica for organic pollutant sensing and removal from water', J Mol Liq, vol. 367, Dec. 2022.

DOI: 10.1016/j.molliq.2022.120544

Google Scholar

[141] S. Bagheri, M. M. Amini, M. Behbahani, and G. Rabiee, 'Low cost thiol-functionalized mesoporous silica, KIT-6-SH, as a useful adsorbent for cadmium ions removal: A study on the adsorption isotherms and kinetics of KIT-6-SH', Microchemical Journal, vol. 145, p.460–469, Mar. 2019.

DOI: 10.1016/j.microc.2018.11.006

Google Scholar

[142] J. O. Otalvaro, M. Avena, and M. Brigante, 'Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability', J Environ Chem Eng, vol. 7, no. 5, Oct. 2019.

DOI: 10.1016/j.jece.2019.103325

Google Scholar

[143] M. B. Yue et al., 'Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group', Microporous and Mesoporous Materials, vol. 114, no. 1–3, p.74–81, 2008.

DOI: 10.1016/j.micromeso.2007.12.016

Google Scholar

[144] Y. Sun, W. Liu, X. Wang, H. Yang, and J. Liu, 'Enhanced adsorption of carbon dioxide from simulated biogas on PEI/MEA-functionalized silica', Int J Environ Res Public Health, vol. 17, no. 4, 2020.

DOI: 10.3390/ijerph17041452

Google Scholar

[145] M. Liu, Z. Zang, S. Zhang, G. Ouyang, and R. Han, 'Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide', Int J Biol Macromol, vol. 182, p.1759–1768, Jul. 2021.

DOI: 10.1016/j.ijbiomac.2021.05.116

Google Scholar

[146] M. Chaudhary, S. Rawat, N. Jain, A. Bhatnagar, and A. Maiti, 'Chitosan-Fe-Al-Mn metal oxyhydroxides composite as highly efficient fluoride scavenger for aqueous medium', Carbohydr Polym, vol. 216, p.140–148, Jul. 2019.

DOI: 10.1016/j.carbpol.2019.04.028

Google Scholar

[147] Y. Fan, F. Rezaei, and X. Yang, 'Mixed Alkanolamine-Polyethylenimine Functionalized Silica for CO 2 capture', Energy Technology, vol. 7, no. 2, p.253–262, Feb. 2019.

DOI: 10.1002/ente.201800481

Google Scholar

[148] Y. Liu et al., 'Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions'.

Google Scholar

[149] G. Qi et al., 'High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules', Energy Environ Sci, vol. 4, no. 2, p.444–452, Feb. 2011.

DOI: 10.1039/c0ee00213e

Google Scholar

[150] F. Song, Q. Zhong, J. Ding, Y. Zhao, and Y. Bu, 'Mesoporous TiO2 as the support of tetraethylenepentamine for CO2 capture from simulated flue gas', RSC Adv, vol. 3, no. 45, p.23785–23790, Dec. 2013.

DOI: 10.1039/c3ra42998a

Google Scholar

[151] Y. Sun, W. Liu, X. Wang, H. Yang, and J. Liu, 'Enhanced adsorption of carbon dioxide from simulated biogas on PEI/MEA-functionalized silica', Int J Environ Res Public Health, vol. 17, no. 4, Feb. 2020.

DOI: 10.3390/ijerph17041452

Google Scholar

[152] M. B. Yue et al., 'Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group', Microporous and Mesoporous Materials, vol. 114, no. 1–3, p.74–81, Sep. 2008.

DOI: 10.1016/j.micromeso.2007.12.016

Google Scholar

[153] Y. Wang, R. T. Yang, and J. M. Heinzel, 'Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials', Chem Eng Sci, vol. 63, no. 2, p.356–365, 2008.

DOI: 10.1016/j.ces.2007.09.002

Google Scholar

[154] Ü. Gedikli, Z. Misirlioğlu, A. Bozkurt, and M. Canel, 'SYNTHESIS AND CHARACTERIZATION OF MCM-41 AND METAL-SUPPORTED MCM-41 MATERIALS USING DIFFERENT METHODS', Commun.Fac.Sci.Univ.Ank.Ser. C Biology, vol. 29, no. 2, p.23–39, 2020, [Online]. Available: https://dergipark.org.tr/en/pub/communb/issue/58140/824616

Google Scholar

[155] Y. Yin, P. Tan, X. Q. Liu, J. Zhu, and L. B. Sun, 'Constructing a confined space in silica nanopores: An ideal platform for the formation and dispersion of cuprous sites', J Mater Chem A Mater, vol. 2, no. 10, p.3399–3406, 2014.

DOI: 10.1039/c3ta14760f

Google Scholar

[156] Y. Yin, P. Tan, X. Q. Liu, J. Zhu, and L. B. Sun, 'Constructing a confined space in silica nanopores: An ideal platform for the formation and dispersion of cuprous sites', J Mater Chem A Mater, vol. 2, no. 10, p.3399–3406, Mar. 2014.

DOI: 10.1039/c3ta14760f

Google Scholar

[157] A. F. Altun and M. Kılıç, 'An investigation of the ammonia adsorption performance on different adsorbents for cooling applications', Bulgarian Chemical Communications, vol. 50, no. January, p.45–52, 2018.

Google Scholar

[158] T. T. Hu et al., 'Selective adsorption of trace gaseous ammonia from air by a sulfonic acid-modified silica xerogel: Preparation, characterization and performance', Chemical Engineering Journal, vol. 443, no. April, p.136357, 2022.

DOI: 10.1016/j.cej.2022.136357

Google Scholar

[159] A. Fidan Altun and M. Kılıç, 'An investigation of the ammonia adsorption performance on different adsorbents for cooling applications', 2018. [Online]. Available: https://www.researchgate.net/publication/330221184

Google Scholar

[160] E. K. Dann et al., 'Structural selectivity of supported Pd nanoparticles for catalytic NH 3 oxidation resolved using combined operando spectroscopy', Nat Catal, vol. 2, no. 2, p.157–163, 2019.

DOI: 10.1038/s41929-018-0213-3

Google Scholar

[161] L. Tang and M. A. Deshusses, 'Novel Integrated Biotrickling Filter-Anammox Bioreactor System for the Complete Treatment of Ammonia in Air with Nitrification and Denitrification', Environ Sci Technol, vol. 54, no. 19, p.12654–12661, Oct. 2020.

DOI: 10.1021/acs.est.0c03332

Google Scholar

[162] A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, 'Ammonia for power', Progress in Energy and Combustion Science, vol. 69. Elsevier Ltd, p.63–102, Nov. 01, 2018.

DOI: 10.1016/j.pecs.2018.07.001

Google Scholar

[163] T. Mochizuki, M. Kubota, H. Matsuda, and L. F. D'Elia Camacho, 'Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation', Fuel Processing Technology, vol. 144, p.164–169, Apr. 2016.

DOI: 10.1016/j.fuproc.2015.12.012

Google Scholar

[164] E. Giannakis, J. Kushta, D. Giannadaki, G. K. Georgiou, A. Bruggeman, and J. Lelieveld, 'Exploring the economy-wide effects of agriculture on air quality and health: Evidence from Europe', Science of the Total Environment, vol. 663, p.889–900, May 2019.

DOI: 10.1016/j.scitotenv.2019.01.410

Google Scholar

[165] I. Wayan Adi Suarya, R. Triandi Tjahjanto, and U. Andayani, 'Study of Hydrogen Sulfide Adsorption on Silica Gel with Triethanolamine layer', The Journal of Pure and Applied Chemistry Research, vol. 11, no. 1, p.46–53, 2022.

DOI: 10.21776/ub.jpacr.2022.011.01.653

Google Scholar

[166] J. Mao, Y. Ma, L. Zang, C. Xiao, and D. Ji, 'Efficient adsorption of hydrogen sulfide at room temperature using fumed silica-supported deep eutectic solvents', Aerosol Air Qual Res, vol. 20, no. 1, p.203–215, 2020.

DOI: 10.4209/aaqr.2019.10.0520

Google Scholar

[167] B. Pongthawornsakun, S. Phatyenchuen, J. Panpranot, and P. Praserthdam, 'The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts', J Environ Chem Eng, vol. 6, no. 1, p.1414–1423, 2018.

DOI: 10.1016/j.jece.2018.01.045

Google Scholar

[168] J. H. Yang, 'Hydrogen sulfide removal technology: A focused review on adsorption and catalytic oxidation', Korean Journal of Chemical Engineering, vol. 38, no. 4, p.674–691, 2021.

DOI: 10.1007/s11814-021-0755-y

Google Scholar

[169] B. Pongthawornsakun, S. Phatyenchuen, J. Panpranot, and P. Praserthdam, 'The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts', J Environ Chem Eng, vol. 6, no. 1, p.1414–1423, Feb. 2018.

DOI: 10.1016/j.jece.2018.01.045

Google Scholar

[170] O. A. Habeeb, R. Kanthasamy, G. A. M. Ali, R. Bin, and M. Yunus, 'OPTIMIZATION OF ACTIVATED CARBON SYNTHESIS USING RESPONSE SURFACE METHODOLOGY TO ENHANCE H 2 S REMOVAL FROM REFINERY WASTEWATER', Journal of Chemical Engineering and Industrial Biotechnology, vol. 1, p.1–17, 2017.

DOI: 10.15282/jceib.v1i1.3715

Google Scholar

[171] J. H. Yang, 'Hydrogen sulfide removal technology: A focused review on adsorption and catalytic oxidation', Korean Journal of Chemical Engineering, vol. 38, no. 4. Springer, p.674–691, Apr. 01, 2021.

DOI: 10.1007/s11814-021-0755-y

Google Scholar

[172] L. Gang, H. Shaoguang, and K. Qian, 'A Promoted Mesoporous Silica-Based Material for SO2 Adsorption', Silicon, vol. 14, no. 5, p.2225–2233, 2022.

DOI: 10.1007/s12633-021-01023-5

Google Scholar

[173] P. Gaudin et al., 'Synthesis of Cu-Ce/KIT-6 materials for SOx removal', Appl Catal A Gen, vol. 504, p.110–118, 2015.

DOI: 10.1016/j.apcata.2014.11.024

Google Scholar

[174] P. Gaudin et al., 'Formation and role of Cu+ species on highly dispersed CuO/SBA-15 mesoporous materials for SOx removal: An XPS study', Fuel Processing Technology, vol. 153, p.129–136, 2016.

DOI: 10.1016/j.fuproc.2016.07.015

Google Scholar

[175] M. Berger et al., 'Desulfurization process: understanding of the behaviour of the CuO/SBA-15 type SOx adsorbent in the presence of NO/NO2 and CO/CO2 flue gas environmental pollutants', Chemical Engineering Journal, vol. 384, no. 2, p.123318, 2020.

DOI: 10.1016/j.cej.2019.123318

Google Scholar

[176] M. Berger, P. Fioux, H. Nouali, S. Dorge, D. Habermacher, and E. Fiani, 'Structure-performance relationship in mesoporous CuO / SBA-15 type SO x adsorbents : evolution of copper-based species under', vol. 33, no. 0, p.1–4, 2017.

DOI: 10.1039/c7cy01010a

Google Scholar

[177] Y. Mathieu, M. Soulard, J. Patarin, and M. Molière, 'Mesoporous materials for the removal of SO 2 from gas streams', Fuel Processing Technology, vol. 99, p.35–42, 2012.

DOI: 10.1016/j.fuproc.2012.02.005

Google Scholar

[178] R. Tailor and A. Sayari, 'Grafted propyldiethanolamine for selective removal of SO2 in the presence of CO2', Chemical Engineering Journal, vol. 289, p.142–149, 2016.

DOI: 10.1016/j.cej.2015.12.084

Google Scholar

[179] R. Tailor, M. Abboud, and A. Sayari, 'Supported polytertiary amines: Highly efficient and selective SO 2 adsorbents', Environ Sci Technol, vol. 48, no. 3, p.2025–2034, 2014.

DOI: 10.1021/es404135j

Google Scholar

[180] W. Luo et al., 'Study on the reusability of kaolin as catalysts for catalytic pyrolysis of low-density polyethylene', Fuel, vol. 302, no. January, p.121164, 2021.

DOI: 10.1016/j.fuel.2021.121164

Google Scholar

[181] Y. Ma, D. Yuan, B. Mu, L. Gao, X. Zhang, and H. Zhang, 'Synthesis, properties and application of double salt (NH4)2Mg(SO4)2·6H2O in wet magnesium-ammonia FGD process', Fuel, vol. 219, p.12–16, May 2018.

DOI: 10.1016/j.fuel.2018.01.055

Google Scholar

[182] D. Flagiello, A. Erto, A. Lancia, and F. Di Natale, 'Experimental and modelling analysis of seawater scrubbers for sulphur dioxide removal from flue-gas', Fuel, vol. 214, p.254–263, Feb. 2018.

DOI: 10.1016/j.fuel.2017.10.098

Google Scholar

[183] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, and P. M. Biesheuvel, 'Review on the science and technology of water desalination by capacitive deionization', Progress in Materials Science, vol. 58, no. 8. Elsevier Ltd, p.1388–1442, 2013.

DOI: 10.1016/j.pmatsci.2013.03.005

Google Scholar

[184] L. A. Salazar Hoyos, B. M. Faroldi, and L. M. Cornaglia, 'A coke-resistant catalyst for the dry reforming of methane based on Ni nanoparticles confined within rice husk-derived mesoporous materials', Catal Commun, vol. 135, Feb. 2020.

DOI: 10.1016/j.catcom.2019.105898

Google Scholar

[185] R. V. Sales et al., 'Assessment of ag nanoparticles interaction over low-cost mesoporous silica in deep desulfurization of diesel', Catalysts, vol. 9, no. 8, Aug. 2019.

DOI: 10.3390/catal9080651

Google Scholar