Biaxial and Uniaxial Strain Effect on Structural and Electronic Properties of Anatase TiO2: A First-Principle Calculation

Article Preview

Abstract:

The effect of biaxial and uniaxial strains on the electronic structure of anatase is studied using Density Functional Theory (DFT) calculation with ultrasoft pseudopotential and a generalized gradient approximation (GGA) Perdew-Burke Ernzerhof (PBE) exchange-correlation. The lattice constant is optimized using the Birch-Murnaghan equation of states (BM-EOS) to get an optimized geometric structure of anatase TiO2. We apply biaxial and uniaxial strains to this optimized structure up to 16% and find that the applied strains change the band gap energy compared to a pure anatase with a different band gap energy up to 1.61 eV for biaxial strain and 0.35 eV for uniaxial strain. The biaxial strains increase gap energies except at +16% tensile strain, decreasing the gap energy to 0.04 eV. Uniaxial strains tend to increase as the strains increase except at-12 and-16%; their gap energy differences are 0.08 and 0.20 eV, respectively, smaller than that of the zero strain. The results also show that the applied 16% tensile strain significantly lengthens the atomic bonds; thus, we conclude that the maximum strain applied to anatase TiO2 is 16%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-131

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, and Z. Li, Recent Advances of Photocatalytic Application in Water Treatment: A Review, Nanomaterials. 11 (2021) 1804.

DOI: 10.3390/nano11071804

Google Scholar

[2] Z. Li, X. Meng, and Z. Zhang, Fabrication of Surface Hydroxyl Modified g-C3N4 with Enhanced Photocatalytic Oxidation Activity, Catal. Sci. Technol. 9 (2019) 3979-3993.

DOI: 10.1039/c9cy00550a

Google Scholar

[3] Z. Li, X. Meng, and Z. Zhang, Fewer-Layer BN Nanosheets-Deposited on Bi2MoO6 Microspheres with Enhanced Visible Light-Driven Photocatalytic Activity, Appl. Surf. Sci. 483 (2019) 572-580.

DOI: 10.1016/j.apsusc.2019.03.245

Google Scholar

[4] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[5] Q. Wang and K. Domen, Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies, Chem. Rev. 120 (2020) 919-985.

DOI: 10.1021/acs.chemrev.9b00201

Google Scholar

[6] E.V. Lavrov, I. Chaplygin, F. Herklotz, V. V. Melnikov, and Y. Kutin, Hydrogen in Single-Crystalline Anatase TiO2, J. Appl. Phys. 131 (2022) 030902.

DOI: 10.1063/5.0086448

Google Scholar

[7] R.S. Pedanekar, S. K. Shaikh, and K. Y. Rajpure, Thin Film Photocatalysis for Environmental Remediation: A Status Review, Curr. Appl. Phys. 20 (2020) 931-952.

DOI: 10.1016/j.cap.2020.04.006

Google Scholar

[8] S. Feizpoor, A. Habibi-Yangjeh, and K. Yubuta, Integration of Carbon Dots and Polyaniline with TiO2 Nanoparticles: Substantially Enhanced Photocatalytic Activity to Removal Various Pollutants under Visible Light, J. Photochem. Photobiol. Chem. 367 (2018) 94-104.

DOI: 10.1016/j.jphotochem.2018.08.017

Google Scholar

[9] X. Liu and J. Fu, Electronic and Elastic Properties of the Tetragonal Anatase TiO2 Structure from First Principle Calculation, Optik. 206 (2020) 164342.

DOI: 10.1016/j.ijleo.2020.164342

Google Scholar

[10] M. Janczarek and E. Kowalska, Defective Dopant-Free TiO2 as an Efficient Visible Light-Active Photocatalyst, Catalysts. 11 (2021) 978.

DOI: 10.3390/catal11080978

Google Scholar

[11] A. Kumar and G. Pandey, A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials, Mater. Sci. Eng. Int. J. 1 (2017) 106‒114.

Google Scholar

[12] C.L. Pang, Strain and Stress Effects on Single Crystal-Supported Titania and Related Nanostructures, Semicond. Sci. Technol. 35 (2020) 113001.

DOI: 10.1088/1361-6641/ab9faa

Google Scholar

[13] N. Kelaidis, A. Kordatos, S.-R. G. Christopoulos, and A. Chroneos, A Roadmap of Strain in Doped Anatase TiO2, Sci. Rep. 8 (2018) 12790.

DOI: 10.1038/s41598-018-30747-5

Google Scholar

[14] V. Kazemlou and A. Phirouznia, Influence of Compression Strains on Photon Absorption of Silicene and Germanene, Superlattices Microstruct. 128 (2019) 23-29.

DOI: 10.1016/j.spmi.2019.01.003

Google Scholar

[15] J. Pető, G. Dobrik, G. Kukucska, P. Vancsó, A. A. Koós, J. Koltai, P. Nemes-Incze, C. Hwang, and L. Tapasztó, Moderate Strain Induced Indirect Bandgap and Conduction Electrons in MoS2 Single Layers, Npj 2D Mater. Appl. 3 (2019) 1-6.

DOI: 10.1038/s41699-019-0123-5

Google Scholar

[16] Z. Liu, C. Menéndez, J. Shenoy, J. N. Hart, C. C. Sorrell, and C. Cazorla, Strain Engineering of Oxide Thin Films for Photocatalytic Applications, Nano Energy. 72 (2020) 104732.

DOI: 10.1016/j.nanoen.2020.104732

Google Scholar

[17] L. Thulin and J. Guerra, Calculations of Strain-Modified Anatase TiO2 Band Structures, Phys. Rev. B 77 (2008) 195112.

Google Scholar

[18] M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, S. Curtarolo, and thus, The AFLOW Library of Crystallographic Prototypes: Part 1, Comput. Mater. Sci. 136 (2017) S1-S282.

DOI: 10.1016/j.commatsci.2017.01.017

Google Scholar

[19] F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev. 71 (1947) 809.

DOI: 10.1103/physrev.71.809

Google Scholar

[20] A. Grünebohm, M. Siewert, C. Ederer, and P. Entel, First-Principles Study of the Influence of (110) Strain on the Ferroelectric Trends of TiO2, Ferroelectrics. 429 (2012) 31-42.

DOI: 10.1080/00150193.2012.676945

Google Scholar

[21] S. M. Gupta and M. Tripathi, A Review of TiO2 Nanoparticles, Chin. Sci. Bull. 56 (2011) 1639-1657.

DOI: 10.1007/s11434-011-4476-1

Google Scholar

[22] Y. Kim, M. Watanabe, J. Matsuda, A. Staykov, H. Kusaba, A. Takagaki, T. Akbay, and T. Ishihara, Chemo-Mechanical Strain Effects on Band Engineering of the TiO2 Photocatalyst for Increasing the Water Splitting Activity, J. Mater. Chem. A. 8 (2020) 1335.

DOI: 10.1039/c9ta11048h

Google Scholar

[23] G. Rajender and P. K. Giri, Strain Induced Phase Formation, Microstructural Evolution and Bandgap Narrowing in Strained TiO2 Nanocrystals Grown by Ball Milling, J. Alloys Compd. 676 (2016) 591.

DOI: 10.1016/j.jallcom.2016.03.154

Google Scholar