[1]
Kolosov, L.V., & Bel'mas, I.V. (1981). Use of electrical models for investigating composites. Mechanics of Composite Materials, 17(1), 115-119.
Google Scholar
[2]
Volokhovskiy V.Yu., Radin V.P., Rudyak M.B. (2010). Concentration of forces in cables and carrying capacity of rubber-cable conveyor belts with damages. MEI Bulletin, (5). 5-12.
Google Scholar
[3]
Cruz Gómez M A, Gallardo-Hernández E A, Vite Torres M, and Peña Bautista A. (2013). Rubber steel friction in contaminated contacts Wear Vol 302 Iss 1-2 pp.1421-1425
DOI: 10.1016/j.wear.2013.01.087
Google Scholar
[4]
Romek D, Ulbrich D, Selech J, Kowalczyk J, and Wlad R. (2021). Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber-Quartz-Metal Condition Materials (Basel) Aug 2;14(15):4323
DOI: 10.3390/ma14154323
Google Scholar
[5]
Yao Y. and Zhang B. (2020). Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors PLoS One Jul 7 15(7): e0235768
DOI: 10.1371/journal.pone.0235768
Google Scholar
[6]
Kravets V, Samusia V, Kolosov D, Bas K, and Onyshchenko S. (2020). Discrete mathematical model of travelling wave of conveyor transport E3S Web of Conf Volume 168 II International Conference Essays of Mining Science and Practice
DOI: 10.1051/e3sconf/202016800030
Google Scholar
[7]
Kirjanów-Błażej A, Jurdziak L, Burduk R, and Błażej R. (2019). Forecast of the remaining lifetime of steel cord conveyor belts based on regression methods in damage analysis identified by subsequent DiagBelt scans Engineering Failure Analysis Vol 100 pp.119-126
DOI: 10.1016/j.engfailanal.2019.02.039
Google Scholar
[8]
Blazej R, Jurdziak L, and Kirjanow-Blazej A et al. (2021) Identification of damage development in the core of steel cord belts with the diagnostic system Sci Rep 11 12349
DOI: 10.1038/s41598-021-91538-z
Google Scholar
[9]
Pang Y and Lodewijks G. (2006). A Novel Embedded Conductive Detection System for Intelligent Conveyor Belt Monitoring 2006 IEEE International Conference on Service Operations and Logistics and Informatics SOLI 2006 pp.803-808
DOI: 10.1109/SOLI.2006.328958
Google Scholar
[10]
Kirjanów-Błażej A, Błażej R, Jurdziak L, and Kozłowski T. (2017). Core damage increase assessment in the conveyor belt with steel cords Diagnostyka (18) pp.93-98
DOI: 10.3390/min14020174
Google Scholar
[11]
Blazej R, Jurdziak L, Burduk R, Kirjanow A, and Kozlowski T. (2017). Analysis of core failure distribution in steel cord belts on the cross-section International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management 17(13) pp.987-994
DOI: 10.5593/sgem2017/13/S03.125
Google Scholar
[12]
Fedorko G, Molnar V, Michalik P, Dovica M, Kelemenová T, and Toth T. (2018). Failure analysis of conveyor belt samples under tensile load Journal of Industrial Textiles (48) 152808371876377
DOI: 10.1177/1528083718763776
Google Scholar
[13]
Fedorko G, Molnár V, Ferková Ž, Peterka P, and Tomašková M. (2016) Possibilities of failure analysis for steel cord conveyor belts using knowledge obtained from non-destructive testing of steel ropes Engineering Failure Analysis (67) pp.33-45 DOI:10.1016/j.engfailanal. 2016.05.026
DOI: 10.1016/j.engfailanal.2016.05.026
Google Scholar
[14]
Webb C, Sikorska J, Khan R, and Hodkiewicz M. (2020). Developing and evaluating predictive conveyor belt wear models Data-Centric Engineering (1) E3
DOI: 10.1017/dce.2020.1
Google Scholar
[15]
Marasová D, Ambriško Ľ, Andrejiová M, and Grinčová A. (2017). Examination of the process of damaging the top covering layer of a conveyor belt applying the FEM Journal of the International Measurement Confederation (112) pp.47-52 DOI:10.1016/j.measurement. 2017.08.016
DOI: 10.1016/j.measurement.2017.08.016
Google Scholar
[16]
Song W, Shang W, and Li X. (2009). Finite element analysis of steel cord conveyor belt splice ET Conference Publications 2009 (556)
DOI: 10.1049/cp.2009.1415
Google Scholar
[17]
Li X G, Long X Y, Jiang H Q, and Long H B. (2018). Finite element simulation and experimental verification of steel cord extraction of steel cord conveyor belt splice 5th Global Conference on Polymer and Composite Materials Ser: Mater Sci Eng (369) 012025
DOI: 10.1088/1757-899X/369/1/012025
Google Scholar
[18]
Wheatley G and Keipour S. (2021). FEA of Conveyor Belt Splice Cord End Conditions UPB Sci Bull Ser D Mech Eng (83) pp.205-216
Google Scholar
[19]
Xianguo Li, Xinyu Long, Zhenqian Shen, and Changyun Miao. (2019). Analysis of Strength Factors of Steel Cord Conveyor Belt Splices Based on the FEM Advances in Materials Science and Engineering Volume 2019 ID 6926413
DOI: 10.1155/2019/6926413
Google Scholar
[20]
Frankl S M, Pletz M, Wondracek A, and Schuecker C. (2022). Assessing Failure in Steel Cable-Reinforced Rubber Belts Using Multi-Scale FEM Modelling J Compos Sci (6) 34
DOI: 10.3390/jcs6020034
Google Scholar
[21]
Bonneric M, Aubin V, and Durville D. (2019). Finite element simulation of a steel cable-rubber composite under bending loading: Influence of rubber penetration on the stress distribution in wires Int J Solids Struct (160) pp.158-167
DOI: 10.1016/j.ijsolstr.2018.10.023
Google Scholar
[22]
Heitzmann P, Froböse T, Wakatsuki A, and Overmeyer L. (2016). Optimierung von Textil-Fördergurtverbindungen mittels Finite Elemente Methode (FEM) Logistics Journal : Proceedings Vol 2016
Google Scholar
[23]
Levchenya Zh B. (2004). Povyshenie nadezhnosti stykovykh soedineniy konveyernykh lent na gornodobyvayushchikh predpriyatiyakh: Na primere RUP "PO "Belaruskaliy" PhD MGOU
Google Scholar
[24]
Belmas I V, Kolosov D L, Kolosov A L, and Onyshchenko S V. (2018). Stress-strain state of rubber-cable tractive element of tubular shape Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu (2) pp.60-69
DOI: 10.29202/nvngu/2018-2/5
Google Scholar
[25]
Bel'mas, I.V. (1993). Stress state of rubber-rope belts during their random damages. Problemy Prochnosti i Nadezhnos'ti Mashin, (6), 45-48.
Google Scholar
[26]
Belmas, I., Kolosov, D., Bilous, O., Tantsura, H., Onyshchenko, S. (2024). Stress state of elastic shell of standard sample in process of cable tear out testing. IOP Conference Series: Earth and Environmental Science. 1348. 012085.
DOI: 10.1088/1755-1315/1348/1/012085
Google Scholar
[27]
Ropay V.A. (2016). Mine Balancing Ropes: Monograph. Dnipropetrovsk: National Mining University. 263 p.
Google Scholar
[28]
Belmas, I., Kolosov, D., Onyshchenko, S., Bilous, O., Tantsura, H. (2023). Influence of Nonlinear Shear Modulus Change of Elastomeric Shell of a Composite Tractive Element with a Damaged Structure on its Stress State. Inżynieria Mineralna, 1(1 (51)), 147–154.
DOI: 10.29227/IM-2023-01-18
Google Scholar
[29]
Belmas I.V., Kolosov D.L., Dolgov O.M., Tantsura G.I. (2017). The stress-strain state of the flat rope of hoisting engine with considering their technical state. Innovations in science and education: challenges of our tame. Collection of scientific papers. London: IASHE. 191-196.
DOI: 10.33271/crpnmu/70.091
Google Scholar
[30]
Kolosov D.L. (2015). Development of the Theory of Hoist Engines with Head Rubberropes Cables. – Manuscript.
Google Scholar