Effect of Multiwalled Carbon Nanotubes (MWCNTs) on the Micro-Hardness and Corrosion Behaviour Mg-Zn Alloy Prepared by Powder Metallurgy

Article Preview

Abstract:

Magnesium Alloys have the potential to be applied in the various fields of applications including biomaterials. Magnesium Alloys are an interesting alloy due to its high strength to density ratio. They have been proposed as a biodegradable implant material due to its friendly effect to human body compared to another alloy. Besides its good biodegradable properties, it has a disadvantage of low hardness and corrosion properties. In order to overcome this, it has been combined with other metals such as Zinc (Zn) or Copper (Cu). To increase mechanical properties, we used Carbon Nanotubes (CNT) as reinforcement. Magnesium-Zinc (Mg-xZn) CNTs composites with several compositions was prepared by using powder metallurgy and sintered in the presence of flowing Argon (Ar) gas in tube furnace. Mg-Zn Alloy with the composition of 4% and 6% of Zn and the variation of CNTs at 0.1%, 0.3 %, and 0.5% was also prepared. Hardness testing by using microvickers showed that CNTs can increase the alloy hardness which the maximum hardness is 53.6 HV. The corrosion rates as low as 175.5 mpy exhibited for the Mg-Alloy with the composition of Mg-4-Zn with 0.1 wt.% of CNTs

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

115-122

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Saini, Implant biomaterials: A comprehensive review, World J. Clin. Cases, (2015).

Google Scholar

[2] D. R. Sumner, Long-term implant fixation and stress-shielding in total hip replacement, J. Biomech., (2015).

Google Scholar

[3] M. A. Papadopoulos and F. Tarawneh, The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review, Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology, (2007).

DOI: 10.1016/j.tripleo.2006.11.022

Google Scholar

[4] Y. F. Zheng, X. N. Gu, and F. Witte, Biodegradable metals, Mater. Sci. Eng. R Reports, vol. 77, p.1–34, Mar. (2014).

Google Scholar

[5] H. S. Brar, M. O. Platt, M. Sarntinoranont, P. I. Martin, and M. V. Manuel, Magnesium as a biodegradable and bioabsorbable material for medical implants, JOM, (2009).

DOI: 10.1007/s11837-009-0129-0

Google Scholar

[6] C. J. Boehlert and K. Knittel, The microstructure, tensile properties, and creep behavior of Mg–Zn alloys containing 0–4.4 wt.% Zn, Mater. Sci. Eng. A, vol. 417, no. 1–2, p.315–321, Feb. (2006).

DOI: 10.1016/j.msea.2005.11.006

Google Scholar

[7] S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys, Mater. Sci. Eng. C, vol. 32, no. 8, p.2570–2577, Dec. (2012).

DOI: 10.1016/j.msec.2012.07.042

Google Scholar

[8] P. Ghosh, M. Mezbahul-Islam, and M. Medraj, Critical assessment and thermodynamic modeling of Mg–Zn, Mg–Sn, Sn–Zn and Mg–Sn–Zn systems, Calphad, vol. 36, p.28–43, Mar. (2012).

DOI: 10.1016/j.calphad.2011.10.007

Google Scholar

[9] E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application, Mater. Sci. Eng. C, vol. 29, no. 3, p.987–993, Apr. (2009).

DOI: 10.1016/j.msec.2008.08.024

Google Scholar

[10] Y. Jingyuan, W. Jianzhong, L. Qiang, S. Jian, C. Jianming, and S. Xudong, Effect of Zn on Microstructures and Properties of Mg-Zn Alloys Prepared by Powder Metallurgy Method, Rare Met. Mater. Eng., vol. 45, no. 11, p.2757–2762, Nov. (2016).

DOI: 10.1016/s1875-5372(17)30035-8

Google Scholar

[11] H. Wei et al., Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design, Scr. Mater., vol. 75, p.30–33, Mar. (2014).

DOI: 10.1016/j.scriptamat.2013.11.014

Google Scholar

[12] S. J. Yoo, S. H. Han, and W. J. Kim, Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes, Scr. Mater., vol. 68, no. 9, p.711–714, May (2013).

DOI: 10.1016/j.scriptamat.2013.01.013

Google Scholar

[13] S. Li, B. Sun, H. Imai, and K. Kondoh, Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system, Carbon N. Y., vol. 61, p.216–228, Sep. (2013).

DOI: 10.1016/j.carbon.2013.04.088

Google Scholar

[14] B. Chen et al., Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests, Compos. Sci. Technol., vol. 113, p.1–8, Jun. (2015).

DOI: 10.1016/j.compscitech.2015.03.009

Google Scholar

[15] Y. Wang, M. Wei, J. Gao, J. Hu, and Y. Zhang, Corrosion process of pure magnesium in simulated body fluid, Mater. Lett., (2008).

Google Scholar

[16] W. D. Müller, M. L. Nascimento, M. Zeddies, M. Córsico, L. M. Gassa, and M. A. F. L. de Mele, Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques, Mater. Res., (2007).

DOI: 10.1590/s1516-14392007000100003

Google Scholar

[17] Z. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., (2010).

DOI: 10.1016/j.corsci.2009.10.016

Google Scholar

[18] G. Song, A. Atrens, and D. Suohn, An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, in Essential Readings in Magnesium Technology, (2014).

DOI: 10.1002/9781118859803.ch90

Google Scholar

[19] M. Esmaily et al., Fundamentals and advances in magnesium alloy corrosion," Prog. Mater. Sci., vol. 89, p.92–193, Aug. (2017).

Google Scholar

[20] N. N. Aung, W. Zhou, C. S. Goh, S. M. L. Nai, and J. Wei, Effect of carbon nanotubes on corrosion of Mg–CNT composites, Corros. Sci., vol. 52, no. 5, p.1551–1553, May (2010).

DOI: 10.1016/j.corsci.2010.02.025

Google Scholar

[21] H. Kalb, A. Rzany, and B. Hensel, Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid, Corros. Sci., (2012).

DOI: 10.1016/j.corsci.2011.12.026

Google Scholar