Material Selection Based on Finite Element Method in Customized Iliac Implant

Article Preview

Abstract:

Osteosarcoma, as the most frequent bone tumor cases, can be found in the pelvis bone. Within the pelvis, the ilium is the most common location for osteosarcoma, followed by the acetabulum and then the ischium. Surgery of pelvis is difficult and the reconstruction is complicated mainly due to the geometry complexity and also the weight support function of the pelvis. Endoprosthesis of the ilium is therefore designed to increase the quality of life of the patient. In this study, the iliac implant is designed based on the natural geometry of the ilium, and the size is modified to fit the morphometry of the Eastern Asian. A finite element method (FEM) is proposed as a basic study in material selection. Titanium and its alloy (Ti-6Al-4V) are studied as the potential candidate for the proposed implant while the finite analysis of the bone was also included. As a preliminary study, in this FEM, only the static load is given, each material is assumed to be isotropic and the contacts were considered bonded. FEM in this study is expected to give a better understanding of the stress distribution, and to optimize the selection of materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

82-89

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. D. Morris, Pelvic bone sarcomas: controversies and treatment options, J. Natl. Compr. Canc. Netw. 8 (6) (2010) 731-737.

DOI: 10.6004/jnccn.2010.0053

Google Scholar

[2] M. Laitinen, M. Parry, J. Albergo, V. Umathi, L. Jeys and R. Grimer, Resection of the ilium in patients with a sarcoma: should the pelvic ring be reconstructed?, The bone & joint journal 99 (4) (2017) 538-543.

DOI: 10.1302/0301-620x.99b4.bjj-2016-0147.r1

Google Scholar

[3] T. Ozaki, C. Hoffmann, A. Hillmann, G. Gosheger, N. Lindner and W. Winkelmann, Implantation of hemipelvic prosthesis after resection of sarcoma, Clinical Orthopaedics and Related Research® 396 (2002) 197-205.

DOI: 10.1097/00003086-200203000-00030

Google Scholar

[4] D. L. Moura, R. Fonseca, J. Freitas, A. Figueiredo and J. Casanova, Reconstruction with iliac pedestal cup and proximal femur tumor prosthesis after wide resection of chondrosarcoma-10-year follow-up results, Revista brasileira de ortopedia 52 (6) (2017) 748-754.

DOI: 10.1016/j.rboe.2016.11.007

Google Scholar

[5] Z. Hua, Y. Fan, Q. Cao and X. Wu, Biomechanical study on the novel biomimetic hemi pelvis prosthesis, Journal of Bionic Engineering 10 (4) (2013) 506-513.

DOI: 10.1016/s1672-6529(13)60244-9

Google Scholar

[6] D. Liu, Z. Hua, X. Yan and Z. Jin, Biomechanical analysis of a novel hemipelvic endoprosthesis during ascending and descending stairs, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 230 (10) (2016) 962-975.

DOI: 10.1177/0954411916663970

Google Scholar

[7] D. Liu, Z. Hua, X. Yan and Z. Jin, Design and biomechanical study of a novel adjustable hemipelvic prosthesis, Med. Eng. Phys. 38 (12) (2016) 1416-1425.

DOI: 10.1016/j.medengphy.2016.09.017

Google Scholar

[8] K.-R. Dai, M.-N. Yan, Z.-A. Zhu and Y.-H. Sun, Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions, The Journal of arthroplasty 22 (7) (2007) 981-986.

DOI: 10.1016/j.arth.2007.05.002

Google Scholar

[9] X. Zhao, J. Xiao, Y. Sun, Z. Zhu, M. Xu, X. Wang, F. Lin, Y. Wang and J. Wang, Novel 3D Printed Modular Hemipelvic Prosthesis for Successful Hemipelvic Arthroplasty: A Case Study, Journal of Bionic Engineering 15 (6) (2018) 1067-1074.

DOI: 10.1007/s42235-018-0094-9

Google Scholar

[10] T. Verma, A. Sharma, A. Sharma and L. Maini, Customized iliac prosthesis for reconstruction in giant cell tumour: A unique treatment approach, Journal of clinical orthopaedics and trauma 7 (2016) 35-40.

DOI: 10.1016/j.jcot.2016.10.001

Google Scholar

[11] D. Wang, Y. Wang, S. Wu, H. Lin, Y. Yang, S. Fan, C. Gu, J. Wang and C. Song, Customized a Ti6Al4V bone plate for complex pelvic fracture by selective laser melting, Materials 10 (1) (2017) 35.

DOI: 10.3390/ma10010035

Google Scholar

[12] R. Magetsari, Suyitno, R. Dharmastiti, U. A. Salim, L. Hidayat, T. Yudiman, Z. A. Lanodiyu and P. Dewo, Three dimensional morphometry of distal femur to design knee prosthesis for indonesian population, Int. J. Morphol 33 (4) (2015) 1255-1260.

DOI: 10.4067/s0717-95022015000400010

Google Scholar

[13] F. Zhu, H. Bao, S. Yuan, B. Wang, J. Qiao, Z. Zhu, Z. Liu, Y. Ding and Y. Qiu, Posterior second sacral alar iliac screw insertion: anatomic study in a Chinese population, Eur. Spine J. 22 (7) (2013) 1683-1689.

DOI: 10.1007/s00586-013-2734-4

Google Scholar

[14] J.-B. Kim, S.-J. Lyu and H. W. Kang, Are Western Knee designs dimensionally correct for korean women? A morphometric study of resected femoral surfaces during primary total knee arthroplasty, Clin. Orthop. Surg. 8 (3) (2016) 254-261.

DOI: 10.4055/cios.2016.8.3.254

Google Scholar

[15] A. Borovkov, L. Maslov, M. Zhmaylo, I. Zelinskiy, I. Voinov, I. Keresten, D. Mamchits, R. Tikhilov, A. Kovalenko and S. Bilyk, Finite Element Stress Analysis of A Total Hip Replacement in Two-Legged Standing.

Google Scholar

[16] J. Böhme, V. Shim, A. Höch, M. Mütze, C. Müller and C. Josten, Clinical implementation of finite element models in pelvic ring surgery for prediction of implant behavior: a case report, Clinical Biomechanics 27 (9) (2012) 872-878.

DOI: 10.1016/j.clinbiomech.2012.06.009

Google Scholar

[17] Q. Chen and G. A. Thouas, Metallic implant biomaterials, Materials Science and Engineering: R: Reports 87 (2015) 1-57.

DOI: 10.1016/j.mser.2014.10.001

Google Scholar

[18] M. Niinomi, M. Nakai and J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia 8 (11) (2012) 3888-3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[19] M. Abdel-Hady Gepreel and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, Journal of the Mechanical Behavior of Biomedical Materials 20 (2013) 407-415.

DOI: 10.1016/j.jmbbm.2012.11.014

Google Scholar

[20] https://www.thingiverse.com/.

Google Scholar

[21] D.W. Park, A. Lim, J. W. Park, K. M. Lim and H. G. Kang, Biomechanical Evaluation of a New Fixation Type in 3D-Printed Periacetabular Implants using a Finite Element Simulation, Applied Sciences 9 (5) (2019) 820.

DOI: 10.3390/app9050820

Google Scholar

[22] A. Semenescu, F. Radu-Ioniță, I. M. Mateș, P. Bădică, N. D. Batalu, O. D. Negoita and V. L. Purcarea, Finite element analysis on a medical implant, Romanian journal of ophthalmology 60 (2) (2016) 116.

Google Scholar

[23] W.F. Enneking and W. Dunham, Resection and reconstruction for primary neoplasms involving the innominate bone, The Journal of bone and joint surgery. American volume 60 (6) (1978) 731-746.

DOI: 10.2106/00004623-197860060-00002

Google Scholar

[24] J. G. Garcia, A. Martinez, R. J. Garcia Filho, M. T. Petrilli and D. C. Viola, Epidemiological characteristics of patients with pelvic tumors submitted to surgical treatment, Revista Brasileira de Ortopedia (English Edition) 53 (1) (2018) 33-37.

DOI: 10.1016/j.rboe.2017.11.004

Google Scholar

[25] H. Fan, J. Fu, X. Li, Y. Pei, X. Li, G. Pei and Z. Guo, Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature, World J. Surg. Oncol. 13 (1) (2015) 308.

DOI: 10.1186/s12957-015-0723-2

Google Scholar

[26] L. Murr, Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting, Journal of the mechanical behavior of biomedical materials 76 (2017) 164-177.

DOI: 10.1016/j.jmbbm.2017.02.019

Google Scholar

[27] K. S. Saladin, in Human Anatomy (Mcgraw-Hill, Boston, 2007).

Google Scholar

[28] M. S. Utomo, M. I. Amal, S. Supriadi, D. Malau, D. Annur and A. W. Pramono, presented at the AIP Conf. Proc., (2019).

DOI: 10.1063/1.5095285

Google Scholar

[29] D. P. Malau, D. Annur, M. S. Utomo, Y. Whulanza, Y. Prabowo and M. I. Amal, Proximal Femur Prosthesis Remodeling and Stress Evaluation for Indonesian Patient, Proceeding of Engineering Physics International Conference, 2018, ITS (2018).

DOI: 10.1063/1.5095334

Google Scholar

[30] A. Bandyopadhyay and S. Bose, Materials and design of orthopedic devices, Encyclopedia of Medical Devices and Instrumentation, pages (2006).

DOI: 10.1002/0471732877.emd193

Google Scholar