[1]
C. D. Morris, Pelvic bone sarcomas: controversies and treatment options, J. Natl. Compr. Canc. Netw. 8 (6) (2010) 731-737.
DOI: 10.6004/jnccn.2010.0053
Google Scholar
[2]
M. Laitinen, M. Parry, J. Albergo, V. Umathi, L. Jeys and R. Grimer, Resection of the ilium in patients with a sarcoma: should the pelvic ring be reconstructed?, The bone & joint journal 99 (4) (2017) 538-543.
DOI: 10.1302/0301-620x.99b4.bjj-2016-0147.r1
Google Scholar
[3]
T. Ozaki, C. Hoffmann, A. Hillmann, G. Gosheger, N. Lindner and W. Winkelmann, Implantation of hemipelvic prosthesis after resection of sarcoma, Clinical Orthopaedics and Related Research® 396 (2002) 197-205.
DOI: 10.1097/00003086-200203000-00030
Google Scholar
[4]
D. L. Moura, R. Fonseca, J. Freitas, A. Figueiredo and J. Casanova, Reconstruction with iliac pedestal cup and proximal femur tumor prosthesis after wide resection of chondrosarcoma-10-year follow-up results, Revista brasileira de ortopedia 52 (6) (2017) 748-754.
DOI: 10.1016/j.rboe.2016.11.007
Google Scholar
[5]
Z. Hua, Y. Fan, Q. Cao and X. Wu, Biomechanical study on the novel biomimetic hemi pelvis prosthesis, Journal of Bionic Engineering 10 (4) (2013) 506-513.
DOI: 10.1016/s1672-6529(13)60244-9
Google Scholar
[6]
D. Liu, Z. Hua, X. Yan and Z. Jin, Biomechanical analysis of a novel hemipelvic endoprosthesis during ascending and descending stairs, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 230 (10) (2016) 962-975.
DOI: 10.1177/0954411916663970
Google Scholar
[7]
D. Liu, Z. Hua, X. Yan and Z. Jin, Design and biomechanical study of a novel adjustable hemipelvic prosthesis, Med. Eng. Phys. 38 (12) (2016) 1416-1425.
DOI: 10.1016/j.medengphy.2016.09.017
Google Scholar
[8]
K.-R. Dai, M.-N. Yan, Z.-A. Zhu and Y.-H. Sun, Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions, The Journal of arthroplasty 22 (7) (2007) 981-986.
DOI: 10.1016/j.arth.2007.05.002
Google Scholar
[9]
X. Zhao, J. Xiao, Y. Sun, Z. Zhu, M. Xu, X. Wang, F. Lin, Y. Wang and J. Wang, Novel 3D Printed Modular Hemipelvic Prosthesis for Successful Hemipelvic Arthroplasty: A Case Study, Journal of Bionic Engineering 15 (6) (2018) 1067-1074.
DOI: 10.1007/s42235-018-0094-9
Google Scholar
[10]
T. Verma, A. Sharma, A. Sharma and L. Maini, Customized iliac prosthesis for reconstruction in giant cell tumour: A unique treatment approach, Journal of clinical orthopaedics and trauma 7 (2016) 35-40.
DOI: 10.1016/j.jcot.2016.10.001
Google Scholar
[11]
D. Wang, Y. Wang, S. Wu, H. Lin, Y. Yang, S. Fan, C. Gu, J. Wang and C. Song, Customized a Ti6Al4V bone plate for complex pelvic fracture by selective laser melting, Materials 10 (1) (2017) 35.
DOI: 10.3390/ma10010035
Google Scholar
[12]
R. Magetsari, Suyitno, R. Dharmastiti, U. A. Salim, L. Hidayat, T. Yudiman, Z. A. Lanodiyu and P. Dewo, Three dimensional morphometry of distal femur to design knee prosthesis for indonesian population, Int. J. Morphol 33 (4) (2015) 1255-1260.
DOI: 10.4067/s0717-95022015000400010
Google Scholar
[13]
F. Zhu, H. Bao, S. Yuan, B. Wang, J. Qiao, Z. Zhu, Z. Liu, Y. Ding and Y. Qiu, Posterior second sacral alar iliac screw insertion: anatomic study in a Chinese population, Eur. Spine J. 22 (7) (2013) 1683-1689.
DOI: 10.1007/s00586-013-2734-4
Google Scholar
[14]
J.-B. Kim, S.-J. Lyu and H. W. Kang, Are Western Knee designs dimensionally correct for korean women? A morphometric study of resected femoral surfaces during primary total knee arthroplasty, Clin. Orthop. Surg. 8 (3) (2016) 254-261.
DOI: 10.4055/cios.2016.8.3.254
Google Scholar
[15]
A. Borovkov, L. Maslov, M. Zhmaylo, I. Zelinskiy, I. Voinov, I. Keresten, D. Mamchits, R. Tikhilov, A. Kovalenko and S. Bilyk, Finite Element Stress Analysis of A Total Hip Replacement in Two-Legged Standing.
Google Scholar
[16]
J. Böhme, V. Shim, A. Höch, M. Mütze, C. Müller and C. Josten, Clinical implementation of finite element models in pelvic ring surgery for prediction of implant behavior: a case report, Clinical Biomechanics 27 (9) (2012) 872-878.
DOI: 10.1016/j.clinbiomech.2012.06.009
Google Scholar
[17]
Q. Chen and G. A. Thouas, Metallic implant biomaterials, Materials Science and Engineering: R: Reports 87 (2015) 1-57.
DOI: 10.1016/j.mser.2014.10.001
Google Scholar
[18]
M. Niinomi, M. Nakai and J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia 8 (11) (2012) 3888-3903.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[19]
M. Abdel-Hady Gepreel and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, Journal of the Mechanical Behavior of Biomedical Materials 20 (2013) 407-415.
DOI: 10.1016/j.jmbbm.2012.11.014
Google Scholar
[20]
https://www.thingiverse.com/.
Google Scholar
[21]
D.W. Park, A. Lim, J. W. Park, K. M. Lim and H. G. Kang, Biomechanical Evaluation of a New Fixation Type in 3D-Printed Periacetabular Implants using a Finite Element Simulation, Applied Sciences 9 (5) (2019) 820.
DOI: 10.3390/app9050820
Google Scholar
[22]
A. Semenescu, F. Radu-Ioniță, I. M. Mateș, P. Bădică, N. D. Batalu, O. D. Negoita and V. L. Purcarea, Finite element analysis on a medical implant, Romanian journal of ophthalmology 60 (2) (2016) 116.
Google Scholar
[23]
W.F. Enneking and W. Dunham, Resection and reconstruction for primary neoplasms involving the innominate bone, The Journal of bone and joint surgery. American volume 60 (6) (1978) 731-746.
DOI: 10.2106/00004623-197860060-00002
Google Scholar
[24]
J. G. Garcia, A. Martinez, R. J. Garcia Filho, M. T. Petrilli and D. C. Viola, Epidemiological characteristics of patients with pelvic tumors submitted to surgical treatment, Revista Brasileira de Ortopedia (English Edition) 53 (1) (2018) 33-37.
DOI: 10.1016/j.rboe.2017.11.004
Google Scholar
[25]
H. Fan, J. Fu, X. Li, Y. Pei, X. Li, G. Pei and Z. Guo, Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature, World J. Surg. Oncol. 13 (1) (2015) 308.
DOI: 10.1186/s12957-015-0723-2
Google Scholar
[26]
L. Murr, Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting, Journal of the mechanical behavior of biomedical materials 76 (2017) 164-177.
DOI: 10.1016/j.jmbbm.2017.02.019
Google Scholar
[27]
K. S. Saladin, in Human Anatomy (Mcgraw-Hill, Boston, 2007).
Google Scholar
[28]
M. S. Utomo, M. I. Amal, S. Supriadi, D. Malau, D. Annur and A. W. Pramono, presented at the AIP Conf. Proc., (2019).
DOI: 10.1063/1.5095285
Google Scholar
[29]
D. P. Malau, D. Annur, M. S. Utomo, Y. Whulanza, Y. Prabowo and M. I. Amal, Proximal Femur Prosthesis Remodeling and Stress Evaluation for Indonesian Patient, Proceeding of Engineering Physics International Conference, 2018, ITS (2018).
DOI: 10.1063/1.5095334
Google Scholar
[30]
A. Bandyopadhyay and S. Bose, Materials and design of orthopedic devices, Encyclopedia of Medical Devices and Instrumentation, pages (2006).
DOI: 10.1002/0471732877.emd193
Google Scholar