Integration of Reduced Graphene Oxide in Platinum-Free Counter Electrode of Dye-Sensitized Solar Cell

Article Preview

Abstract:

Dye-sensitized solar cells (DSSCs) is a part of the third-generation family which have been developed under substantial research for almost three decades due to their low-cost fabrication, low toxicity, and can be manufactured on the flexible substrate. However, the challenge for the improvement of current DSSC is still opened, especially in the scope of efficiency, stability, and platinum (Pt)-free counter electrode. In this work, the incorporation of solution-processed rGO as a replacement for the Pt counter electrode DSSC is demonstrated. The rGO solutions with three different concentrations (1, 3, and 5 wt%) are utilized. The highest power conversion efficiency (PCE) of about 0.1 % is displayed by 5 wt% rGO solution based devices. The results reported in this work exhibited the high potential of solution-processed rGO as an efficient alternative material in the counter electrode of DSSC.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

12-19

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, (6346), 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004, 16, (25), R829-R858.

DOI: 10.1088/0953-8984/16/25/r01

Google Scholar

[3] Chandiran, A. K.; Abdi-Jalebi, M.; Nazeeruddin, M. K.; Grätzel, M., Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells. ACS Nano 2014, 8, (3), 2261-2268.

DOI: 10.1021/nn405535j

Google Scholar

[4] Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 2009, 21, (41), 4087-4108.

DOI: 10.1002/adma.200803827

Google Scholar

[5] Lee, K. S.; Lee, H. K.; Wang, D. H.; Park, N.-G.; Lee, J. Y.; Park, O. O.; Park, J. H., Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chemical Communications 2010, 46, (25), 4505-4507.

DOI: 10.1039/c0cc00432d

Google Scholar

[6] Smestad, G.; Bignozzi, C.; Argazzi, R., Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Solar Energy Materials and Solar Cells 1994, 32, (3), 259-272.

DOI: 10.1016/0927-0248(94)90263-1

Google Scholar

[7] Ramasamy, E.; Lee, J., Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chemical Communications 2010, 46, (12), 2136-2138.

DOI: 10.1039/b920916f

Google Scholar

[8] Kay, A.; Grätzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, 44, (1), 99-117.

DOI: 10.1016/0927-0248(96)00063-3

Google Scholar

[9] Cha, S. I.; Koo, B. K.; Seo, S. H.; Lee, D. Y., Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls. Journal of Materials Chemistry 2010, 20, (4), 659-662.

DOI: 10.1039/b918920c

Google Scholar

[10] Suzuki, K.; Yamaguchi, M.; Kumagai, M.; Yanagida, S., Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells. Chemistry Letters 2002, 32, (1), 28-29.

DOI: 10.1246/cl.2003.28

Google Scholar

[11] Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.-i.; Murata, K., High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003, 79, (4), 459-469.

DOI: 10.1016/s0927-0248(03)00021-7

Google Scholar

[12] Murakami, T. N.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Cesar, I.; Liska, P.; Humphry-Baker, R.; Comte, P.; Péchy, P., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of the Electrochemical Society 2006, 153, (12), A2255-A2261.

DOI: 10.1149/1.2358087

Google Scholar

[13] Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L., Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano 2010, 4, (2), 887-894.

DOI: 10.1021/nn901660v

Google Scholar

[14] Choi, H.; Kim, H.; Hwang, S.; Choi, W.; Jeon, M., Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Solar Energy Materials and Solar Cells 2011, 95, (1), 323-325.

DOI: 10.1016/j.solmat.2010.04.044

Google Scholar

[15] Selopal, G. S.; Milan, R.; Ortolani, L.; Morandi, V.; Rizzoli, R.; Sberveglieri, G.; Veronese, G. P.; Vomiero, A.; Concina, I., Graphene as transparent front contact for dye sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 135, 99-105.

DOI: 10.1016/j.solmat.2014.10.016

Google Scholar

[16] Novoselov, K. S.; Blake, P.; Katsnelson, M. I., Graphene: Electronic Properties. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J.; Cahn, R. W.; Flemings, M. C.; Ilschner, B.; Kramer, E. J.; Mahajan, S.; Veyssière, P., Eds. Elsevier: Oxford, 2008; pp.1-6.

DOI: 10.1016/b0-08-043152-6/01865-9

Google Scholar

[17] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, (5696), 666–669.

DOI: 10.1126/science.1102896

Google Scholar

[18] Suhaimi, L.; Yuwono, A. H.; Hudaya, C., The influence of different seeds solution concentration upon chemical bath deposition process on the morphology of ZnO nanorods. Journal of Physics: Conference Series 2019, 1170, 012059.

DOI: 10.1088/1742-6596/1170/1/012059

Google Scholar

[19] Yuwono, A. H.; Sholehah, A.; Harjanto, S.; Dhaneswara, D.; Maulidiah, F., Optimizing the Nanostructural Characteristics of Chemical Bath Deposition Derived ZnO Nanorods by Post-Hydrothermal Treatments. Advanced Materials Research, 2013, 789, 132-137.

DOI: 10.4028/www.scientific.net/amr.789.132

Google Scholar

[20] Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80, (6), 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[21] Madsuha, A. F.; Van Pham, C.; Eck, M.; Neukom, M.; Krueger, M., Improved Hole Injection in Bulk Heterojunction (BHJ) Hybrid Solar Cells by Applying a Thermally Reduced Graphene Oxide Buffer Layer. Journal of Nanomaterials 2019, 2019, 10.

DOI: 10.1155/2019/6095863

Google Scholar

[22] Xu, K.; Shen, Y.; Zhang, Z.; Cao, M.; Gu, F.; Wang, L., The influence of different modified graphene on property of DSSCs. Applied Surface Science, 2016, 362, 477-482.

DOI: 10.1016/j.apsusc.2015.09.265

Google Scholar

[23] Shojaeenezhad, S. S.; Farbod, M.; Kazeminezhad, I., Effects of initial graphite particle size and shape on oxidation time in graphene oxide prepared by Hummers' method. Journal of Science: Advanced Materials and Devices 2017, 2, (4), 470-475.

DOI: 10.1016/j.jsamd.2017.09.003

Google Scholar