Optimizing Performance of Li4Ti5O12 (LTO) by Addition of Sn Microparticle in High Loading as Anode for Lithium-Ion Batteries

Article Preview

Abstract:

Li4Ti5O12/Sn was successfully synthesized by a solid-state method using the High Energy Ball Mill Machine as anode for Lithium-Ion batteries. The addition of various (10%, 20%, 30%) Sn-micro particle is aimed to enhance LTO's conductivity and capacity. Characterization of the sample's structure was performed using X-ray diffraction (XRD), which expose the presence of TiO2 rutile and Sn in each sample. The surface area of samples observed using Brunner-Emmet-Teller (BET), which indicates the different surface area of each Sn addition. Scanning electron microscopy (SEM) suggested agglomeration and poor distribution appear in every sample. Cyclic voltammetry (CV) was performed to measure the battery's performance. Two peaks occur as a sign of reversible reaction. The impedance of Li4Ti5O12/Sn measured using electrochemical impedance spectroscopy (EIS), the test performed before and after Cyclic voltammetry (CV), each test showed the different result for each sample. Other than EIS and CV, Charge-Discharge (CD) also performed, examinations in different C-rate were performed, and higher Sn concentration leads to lower stability in high C. The result reveals that the addition of 20% Sn optimizes Li4Ti5O12 in enhancing capacity and conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

20-30

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: Present and Future,, Materials Today, vol. 18, no. 5, p.252–264, (2015).

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[2] N. Takami, K. Hoshina, and H. Inagaki, Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction,, Journal of The Electrochemical Society, vol. 158, no. 6, p. A725, (2011).

DOI: 10.1149/1.3574037

Google Scholar

[3] Y.-J. Hao, Q.-Y. Lai, Y.-D. Chen, J.-Z. Lu, and X.-Y. Ji, In situ deposition method preparation of Li4Ti5O12–SnO2 composite materials for lithium ion batteries,, Journal of Alloys and Compounds, vol. 462, no. 1–2, p.404–409, Aug. (2008).

DOI: 10.1016/j.jallcom.2007.08.061

Google Scholar

[4] A. Sivashanmugam, S. Gopukumar, R. Thirunakaran, C. Nithya, and S. Prema, Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries,, Materials Research Bulletin, vol. 46, no. 4, p.492–500, Apr. (2011).

DOI: 10.1016/j.materresbull.2011.01.007

Google Scholar

[5] I. Bilecka and M. Niederberger, New developments in the nonaqueous and/or non-hydrolytic sol–gel synthesis of inorganic nanoparticles,, Electrochimica Acta, vol. 55, no. 26, p.7717–7725, Nov. (2010).

DOI: 10.1016/j.electacta.2009.12.066

Google Scholar

[6] B. Priyono, A. H. Yuwono, B. Munir, A. Rahman, A. Maulana, and H. Abimanyu, Synthesis of Highly-Ordered TiO2 through CO2 Supercritical Extraction for Dye-Sensitized Solar Cell Application,, Advanced Materials Research, vol. 789, p.28–32, Sep. (2013).

DOI: 10.4028/www.scientific.net/amr.789.28

Google Scholar

[7] V. Augugliaro, S. Coluccia, E. García-López, V. Loddo, G. Marcì, G. Martra, L. Palmisano, and M. Schiavello, Comparison of Different Photocatalytic Systems for Acetonitrile Degradation in Gas–solid Regime,, Topics in Catalysis, vol. 35, no. 3–4, p.237–244, Jul. (2005).

DOI: 10.1007/s11244-005-3830-4

Google Scholar

[8] C. A. Ruslimie, H. Razali, and W. M. Khairul, Catalytic Study on TiO2 Photocatalyst Synthesized Via Microemulsion Method on Atrazine,, Sains Malaysiana, vol. 40, no. 8, p.897–902, (2011).

Google Scholar

[9] C. Zhang, Y. Zhang, J. Wang, D. Wang, D. He, and Y. Xia, Li4Ti5O12 prepared by a modified citric acid sol-gel method for lithium-ion battery,, Journal of Power Sources, vol. 236, p.118–125, (2013).

DOI: 10.1016/j.jpowsour.2013.01.135

Google Scholar

[10] O. Lev, Z. Wu, S. Bharathi, V. Glezer, a. Modestov, J. Gun, L. Rabinovich, and S. Sampath, Sol−Gel Materials in Electrochemistry,, Chemistry of Materials, vol. 9, no. 11, p.2354–2375, (1997).

DOI: 10.1021/cm970367b

Google Scholar

[11] B. Zhao, R. Ran, M. Liu, and Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries : The latest advancements and future perspectives,, Materials Science & Engineering R, vol. 98, p.1–71, (2015).

DOI: 10.1016/j.mser.2015.10.001

Google Scholar

[12] R. Cai, X. Yu, X. Liu, and Z. Shao, Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance,, Journal of Power Sources, vol. 195, no. 24, p.8244–8250, Dec. (2010).

DOI: 10.1016/j.jpowsour.2010.07.059

Google Scholar

[13] L. Xiong, Z. He, Z. Yin, and Q. Chen, Preparation and characterization of SnO2-Li4Ti5O12 composite by sol-gel technique,, Transactions of Nonferrous Metals Society of China, vol. 20, Supple, no. 20873054, pp. s267–s270, (2010).

DOI: 10.1016/s1003-6326(10)60053-2

Google Scholar

[14] N. M. Abdurrahman, B. Priyono, A. Z. Syahrial, and A. Subhan, Effect of Acetylene Black Content in Li4Ti5O12 Xerogel Solid- State Anode Materials on Half-Cell Li-ion Batteries Performance,, Journal of Physics: Conference Series, vol. 877, p.012008, (2017).

DOI: 10.1088/1742-6596/877/1/012008

Google Scholar

[15] B. Priyono, A. Z. Syahrial, A. H. Yuwono, E. Kartini, M. Marfelly, and W. M. F. Rahmatulloh, Synthesis of Lithium Titanate (Li4Ti5O12) through Hydrothermal Process by using Lithium Hydroxide (LiOH) and Titanium Dioxide (TiO2) Xerogel,, International Journal of Technology, vol. 6, no. 4, p.555–564, Oct. (2015).

DOI: 10.14716/ijtech.v6i4.1965

Google Scholar

[16] B. Priyono, Faizah, A. Z. Syahrial, and A. Subhan, Effect of Acetylene Black Content to Half Cells Li-ion Battery Performance Based on Li4Ti5O12 using Li2CO3 as Lithium Ion Source with Hydrothermal Mechanochemical Process,, in Journal of Physics: Conference Series, 2017, vol. 1.

DOI: 10.1088/1742-6596/877/1/012052

Google Scholar

[17] Y. J. Gu, Z. Guo, and H. Q. Liu, Structure and electrochemical properties of Li4Ti5O12 with Li excess as an anode electrode material for Li-ion batteries,, Electrochimica Acta, vol. 123, p.576–581, Mar. (2014).

DOI: 10.1016/j.electacta.2013.12.159

Google Scholar

[18] A. Sivashanmugam, T. P. Kumar, N. G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens, and J. Garche, Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries,, Journal of Power Sources, vol. 144, no. 1, p.197–203, (2005).

DOI: 10.1016/j.jpowsour.2004.12.047

Google Scholar

[19] L. Yin, S. Chai, F. Wang, J. Huang, J. Li, C. Liu, and X. Kong, Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery,, Ceramics International, vol. 42, no. 8, p.9433–9437, (2016).

DOI: 10.1016/j.ceramint.2016.02.173

Google Scholar

[20] O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, New anode systems for lithium ion cells,, Journal of Power Sources, vol. 94, no. 2, p.169–174, (2001).

DOI: 10.1016/s0378-7753(00)00599-1

Google Scholar

[21] Y. Zhao, M. Xia, X. Hu, Z. Zhao, Y. Wang, and Z. Lv, Effects of Sn doping on the structural and electrochemical properties of Li 1.2 Ni 0.2 Mn 0.8 O 2 Li-rich cathode materials,, Electrochimica Acta, vol. 174, p.1167–1174, (2015).

DOI: 10.1016/j.electacta.2015.05.068

Google Scholar

[22] Y.-B. He, M. Liu, Z.-D. Huang, B. Zhang, Y. Yu, B. Li, F. Kang, and J.-K. Kim, Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries,, Journal of Power Sources, vol. 239, p.269–276, (2013).

DOI: 10.1016/j.jpowsour.2013.03.141

Google Scholar

[23] G. X. Wang, J.-H. Ahn, M. J. Lindsay, L. Sun, D. H. Bradhurst, S. X. Dou, and H. K. Liu, Graphite–Tin composites as anode materials for lithium-ion batteries,, Journal of Power Sources, vol. 97, p.211–215, (2001).

DOI: 10.1016/s0378-7753(01)00619-x

Google Scholar

[24] T. Zeng, Sn Embedded Li4Ti5O12/C Composite as a High Capacity Anode Material for Li-ion Battery,, International Journal of Electrochemical Science, vol. 11, p.10199–10209, (2016).

DOI: 10.20964/2016.12.58

Google Scholar