[1]
N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: Present and Future,, Materials Today, vol. 18, no. 5, p.252–264, (2015).
DOI: 10.1016/j.mattod.2014.10.040
Google Scholar
[2]
N. Takami, K. Hoshina, and H. Inagaki, Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction,, Journal of The Electrochemical Society, vol. 158, no. 6, p. A725, (2011).
DOI: 10.1149/1.3574037
Google Scholar
[3]
Y.-J. Hao, Q.-Y. Lai, Y.-D. Chen, J.-Z. Lu, and X.-Y. Ji, In situ deposition method preparation of Li4Ti5O12–SnO2 composite materials for lithium ion batteries,, Journal of Alloys and Compounds, vol. 462, no. 1–2, p.404–409, Aug. (2008).
DOI: 10.1016/j.jallcom.2007.08.061
Google Scholar
[4]
A. Sivashanmugam, S. Gopukumar, R. Thirunakaran, C. Nithya, and S. Prema, Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries,, Materials Research Bulletin, vol. 46, no. 4, p.492–500, Apr. (2011).
DOI: 10.1016/j.materresbull.2011.01.007
Google Scholar
[5]
I. Bilecka and M. Niederberger, New developments in the nonaqueous and/or non-hydrolytic sol–gel synthesis of inorganic nanoparticles,, Electrochimica Acta, vol. 55, no. 26, p.7717–7725, Nov. (2010).
DOI: 10.1016/j.electacta.2009.12.066
Google Scholar
[6]
B. Priyono, A. H. Yuwono, B. Munir, A. Rahman, A. Maulana, and H. Abimanyu, Synthesis of Highly-Ordered TiO2 through CO2 Supercritical Extraction for Dye-Sensitized Solar Cell Application,, Advanced Materials Research, vol. 789, p.28–32, Sep. (2013).
DOI: 10.4028/www.scientific.net/amr.789.28
Google Scholar
[7]
V. Augugliaro, S. Coluccia, E. García-López, V. Loddo, G. Marcì, G. Martra, L. Palmisano, and M. Schiavello, Comparison of Different Photocatalytic Systems for Acetonitrile Degradation in Gas–solid Regime,, Topics in Catalysis, vol. 35, no. 3–4, p.237–244, Jul. (2005).
DOI: 10.1007/s11244-005-3830-4
Google Scholar
[8]
C. A. Ruslimie, H. Razali, and W. M. Khairul, Catalytic Study on TiO2 Photocatalyst Synthesized Via Microemulsion Method on Atrazine,, Sains Malaysiana, vol. 40, no. 8, p.897–902, (2011).
Google Scholar
[9]
C. Zhang, Y. Zhang, J. Wang, D. Wang, D. He, and Y. Xia, Li4Ti5O12 prepared by a modified citric acid sol-gel method for lithium-ion battery,, Journal of Power Sources, vol. 236, p.118–125, (2013).
DOI: 10.1016/j.jpowsour.2013.01.135
Google Scholar
[10]
O. Lev, Z. Wu, S. Bharathi, V. Glezer, a. Modestov, J. Gun, L. Rabinovich, and S. Sampath, Sol−Gel Materials in Electrochemistry,, Chemistry of Materials, vol. 9, no. 11, p.2354–2375, (1997).
DOI: 10.1021/cm970367b
Google Scholar
[11]
B. Zhao, R. Ran, M. Liu, and Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries : The latest advancements and future perspectives,, Materials Science & Engineering R, vol. 98, p.1–71, (2015).
DOI: 10.1016/j.mser.2015.10.001
Google Scholar
[12]
R. Cai, X. Yu, X. Liu, and Z. Shao, Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance,, Journal of Power Sources, vol. 195, no. 24, p.8244–8250, Dec. (2010).
DOI: 10.1016/j.jpowsour.2010.07.059
Google Scholar
[13]
L. Xiong, Z. He, Z. Yin, and Q. Chen, Preparation and characterization of SnO2-Li4Ti5O12 composite by sol-gel technique,, Transactions of Nonferrous Metals Society of China, vol. 20, Supple, no. 20873054, pp. s267–s270, (2010).
DOI: 10.1016/s1003-6326(10)60053-2
Google Scholar
[14]
N. M. Abdurrahman, B. Priyono, A. Z. Syahrial, and A. Subhan, Effect of Acetylene Black Content in Li4Ti5O12 Xerogel Solid- State Anode Materials on Half-Cell Li-ion Batteries Performance,, Journal of Physics: Conference Series, vol. 877, p.012008, (2017).
DOI: 10.1088/1742-6596/877/1/012008
Google Scholar
[15]
B. Priyono, A. Z. Syahrial, A. H. Yuwono, E. Kartini, M. Marfelly, and W. M. F. Rahmatulloh, Synthesis of Lithium Titanate (Li4Ti5O12) through Hydrothermal Process by using Lithium Hydroxide (LiOH) and Titanium Dioxide (TiO2) Xerogel,, International Journal of Technology, vol. 6, no. 4, p.555–564, Oct. (2015).
DOI: 10.14716/ijtech.v6i4.1965
Google Scholar
[16]
B. Priyono, Faizah, A. Z. Syahrial, and A. Subhan, Effect of Acetylene Black Content to Half Cells Li-ion Battery Performance Based on Li4Ti5O12 using Li2CO3 as Lithium Ion Source with Hydrothermal Mechanochemical Process,, in Journal of Physics: Conference Series, 2017, vol. 1.
DOI: 10.1088/1742-6596/877/1/012052
Google Scholar
[17]
Y. J. Gu, Z. Guo, and H. Q. Liu, Structure and electrochemical properties of Li4Ti5O12 with Li excess as an anode electrode material for Li-ion batteries,, Electrochimica Acta, vol. 123, p.576–581, Mar. (2014).
DOI: 10.1016/j.electacta.2013.12.159
Google Scholar
[18]
A. Sivashanmugam, T. P. Kumar, N. G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens, and J. Garche, Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries,, Journal of Power Sources, vol. 144, no. 1, p.197–203, (2005).
DOI: 10.1016/j.jpowsour.2004.12.047
Google Scholar
[19]
L. Yin, S. Chai, F. Wang, J. Huang, J. Li, C. Liu, and X. Kong, Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery,, Ceramics International, vol. 42, no. 8, p.9433–9437, (2016).
DOI: 10.1016/j.ceramint.2016.02.173
Google Scholar
[20]
O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, New anode systems for lithium ion cells,, Journal of Power Sources, vol. 94, no. 2, p.169–174, (2001).
DOI: 10.1016/s0378-7753(00)00599-1
Google Scholar
[21]
Y. Zhao, M. Xia, X. Hu, Z. Zhao, Y. Wang, and Z. Lv, Effects of Sn doping on the structural and electrochemical properties of Li 1.2 Ni 0.2 Mn 0.8 O 2 Li-rich cathode materials,, Electrochimica Acta, vol. 174, p.1167–1174, (2015).
DOI: 10.1016/j.electacta.2015.05.068
Google Scholar
[22]
Y.-B. He, M. Liu, Z.-D. Huang, B. Zhang, Y. Yu, B. Li, F. Kang, and J.-K. Kim, Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries,, Journal of Power Sources, vol. 239, p.269–276, (2013).
DOI: 10.1016/j.jpowsour.2013.03.141
Google Scholar
[23]
G. X. Wang, J.-H. Ahn, M. J. Lindsay, L. Sun, D. H. Bradhurst, S. X. Dou, and H. K. Liu, Graphite–Tin composites as anode materials for lithium-ion batteries,, Journal of Power Sources, vol. 97, p.211–215, (2001).
DOI: 10.1016/s0378-7753(01)00619-x
Google Scholar
[24]
T. Zeng, Sn Embedded Li4Ti5O12/C Composite as a High Capacity Anode Material for Li-ion Battery,, International Journal of Electrochemical Science, vol. 11, p.10199–10209, (2016).
DOI: 10.20964/2016.12.58
Google Scholar