Effect of Cobalt Content on the Structural Properties of Zirconia Prepared by Sol-Gel Method

Article Preview

Abstract:

Zirconia (ZrO2) powders doped with cobalt were prepared by sol-gel method using inorganic salt of zirconium (IV) chloride (ZrCl4) as precursor. The amount of cobalt was varied in the range of 4–16% weight percent to study the effect to structural properties. X-ray diffraction (XRD) analysis suggested the resulting phases were zirconium oxide (Baddeleyite) with monoclinic crystal system along with cobalt oxide as secondary phase. The increasing cobalt content caused the XRD peaks to shift into lower angle due to substitution of Zr atom to smaller Co atom in crystal lattice. Scanning electron microscope (SEM) images showed the samples with higher Co content had smoother surface. Generally, the microstructures of Co doped zirconia powders consisted of large agglomerates with small particles on the surface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

227-232

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.P. Borilo, L.N. Spivakova, Synthesis and characterization of ZrO2 thin films, Am. J. Mat. Sci. 2 (2012) 119-124.

Google Scholar

[2] Y.L. Guo, S.G. Long, R. Talle, Effect of dopants on the corrosion behaviour of zirconia by steel at high temperature, Key Eng. Mat. 999 (2007) 280-283.

DOI: 10.4028/www.scientific.net/kem.280-283.999

Google Scholar

[3] W. Liu, Y. Chen, C. Ye, P. Zhang, Preparation and characterization of doped sol-gel zirconia films, Ceram Int. 28 (2002) 349-354.

DOI: 10.1016/s0272-8842(01)00101-8

Google Scholar

[4] H.G. Sun, S.Z. Yan, P.T. Li, Q.H. Tan, A.J. Wu, Effects of monoclinic ZrO2 with different particle size on properties of zirconia refractories, Adv. Mat. Res. 721 (2011) 335-336.

DOI: 10.4028/www.scientific.net/amr.335-336.721

Google Scholar

[5] X.X. Li, L. Chen, B. Li, L. Li, Preparation of zirconia nanopowders in ultrasonic field by the sol-gel method, Key Eng. Mat. 981 (2007) 280-283.

DOI: 10.4028/www.scientific.net/kem.280-283.981

Google Scholar

[6] M.S. Jamil, KE Saputro, A. Noviyanto, W.B. Widayatno, A.S. Wismogroho, M.I. Amal, N.T. Rochman, T. Nishimura. Dense and fine-grained barium titanate prepared by spark plasma sintering, Journal of Physics: Conference Series 1191 (2019) 012039.

DOI: 10.1088/1742-6596/1191/1/012039

Google Scholar

[7] A. Saccà, I. Gatto, A. Carbone, R. Pedicini, S. Maisano, A. Stassi, E. Passalacqua, Influence of doping level in Yttria-Stabilised-Zirconia (YSZ) based-fillers as degradation inhibitors for proton exchange membranes fuel cells (PEMFCs) in drastic conditions, Int. J. Hydrog. Energy 44 (2019) 31445-31457.

DOI: 10.1016/j.ijhydene.2019.10.026

Google Scholar

[8] M. Turon-Vinas, F. Zhang, J. Vleugels, M. Anglada. Effect of calcia co-doping on ceria-stabilized zirconia. J. Eur. Ceram. Soc. 38 (2018) 2621-2631.

DOI: 10.1016/j.jeurceramsoc.2017.12.053

Google Scholar

[9] F.Yu, J. Xiao, L. Lei,W. Cai, Y. Zhang, J. Liu, M. Liu, Effects of doping alumina on the electrical and sintering performances of yttrium-stabilized-zirconia, Solid State Ion. 289 (2016), 28-34.

DOI: 10.1016/j.ssi.2016.02.022

Google Scholar

[10] C.J. Lucio-Ortiz, J.R. De la Rosa, A. Hernandez-Ramirez, E.M. Lopez-Cuellar, G. Beltran-Perez, R.D.C.M. Guardiola, C.D. Pedroza-Solis, La-, Mn- and Fe-doped zirconia catalysts by sol-gel synthesis: TEM characterization, mass-transfer evaluation and kinetic determination in the catalytic combustion of trichloroethylene, Colloid Surface A 371 (2010) 81-90.

DOI: 10.1016/j.colsurfa.2010.09.008

Google Scholar

[11] N.P.F. Gonçalves, M.C. Paganini, P. Armillotta, E. Cerrato, P. Calza, The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation, J. Environ. Chem. Eng. 7 (2019) 103475.

DOI: 10.1016/j.jece.2019.103475

Google Scholar

[12] H. McMurdie, M. Morris, E. Evans, B. Paretzkin, W. Wong-Ng, C.Hubbard, Standard X-ray diffraction powder patterns from the JCPDS research associateship, Powder Diffr. 1 (1986) 64-77.

DOI: 10.1017/s0885715600011593

Google Scholar

[13] K. Martin, G. McCarthy, ICDD Grant-in-Aid, North Dakota State University, North Dakota, USA, (1990).

Google Scholar

[14] K. Markandan, J.K. Chin, M.T.T. Tan, Study on Mechanical Properties of Zirconia-Alumina Based Ceramics, Appl. Mech. Mater. 625 (2014) 81–84.

DOI: 10.4028/www.scientific.net/amm.625.81

Google Scholar

[15] H. Reverón, H. Vesteghem, Sintering Behaviour of Zirconia and Ceria-Doped Zirconia Powders Cristallized under Hydrothermal Conditions, Key Eng. Mater. 206–213 (2001) 183–188.

DOI: 10.4028/www.scientific.net/kem.206-213.183

Google Scholar

[16] G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas, M.S. Haider, S.J. Kang, H.T. Kim, Sol-gel synthesis of photoactive zirconia-titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder Technol. 258 (2014) 99-109.

DOI: 10.1016/j.powtec.2014.03.024

Google Scholar