The Strength of Polylactic Acid Composites Reinforced with Sugarcane Bagasse and Rice Husk

Article Preview

Abstract:

There are more than 1000 species of cellulose plants available in fiber form. A number of them are by-products from the major food crops contain lignocellulosic sources and being investigated as composite reinforcement materials. Sugarcane bagasse and rice husk are potential reinforcement materials and they were used to reinforce polylactic acid (PLA) matrix to make green composites. In this research work, sugarcane bagasse was given two different kinds of treatment; some were alkali treated using 8 wt.% NaOH at room temperature for an hour and some other were steam treated at 0.75 MPa for 30 minutes. The fiber content of the composites changed with weight percentage ratios of sugarcane bagasse/rice husk/PLA was 25/0/75, 25/5/70 and 25/10/65. Flexural strength was tested in accordance with ASTM D790-17 and structural evaluation was evaluated using scanning electron microscope (SEM) on the fracture section of the flexural test samples. Composites produced using steam treated sugarcane bagasse and rice husk have lower area density (1277-1385 g/m2) compared to the ones formed using NaOH treated bagasse and rice husk (1162-1500 g/m2). Both values of area density are below the density of neat PP and wood flour reinforced PP/PE composites used as reference materials. The flexural test shows the NaOH treatment on the bagasse fibers improve the flexural strength of the composites but the rice husk content introduced to the structure reduces the strength of the composites. SEM evaluation shows fiber fracture and few pull-out.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

193-199

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Dányádi, K. Renner, Z. Szabo, G. Nagy, J. Móczó and B. Pukánszky, Polym. Adv. Technol. 17 (2006) 967–974.

DOI: 10.1002/pat.838

Google Scholar

[2] L. Dányádi, K. Renner, J. Móczó and B. Pukánszky, Polym. Eng. Sci. 47(8) (2007) 1246-1255.

DOI: 10.1002/pen.20768

Google Scholar

[3] J. Anggono, Á. E. Farkas, A. Bartos, J. Móczó, Antoni, H. Purwaningsih, and B. Pukánszky, Eur. Polym. J., 112 (3) (2019) 153-160.

DOI: 10.1016/j.eurpolymj.2018.12.033

Google Scholar

[4] K. Renner, C. Kenyó, J. Móczó, and B. Pukánszky, Composites, Appl. Sci. Manuf. A41(11) (2010) 1653-1661.

DOI: 10.1016/j.compositesa.2010.08.001

Google Scholar

[5] R. Csizmadia, G. Faludi, K. Renner, J. Móczó, B. Pukánszky, Composites, Appl. Sci. Manuf. A53 (2013) 46-53.

Google Scholar

[6] J. Gassan, A.K. Bledzki, Compos. Sci. Technol. 59(9) (1999) 1303-1309.

Google Scholar

[7] A. Valadez-Gonzalez, J.M. Cervantes-Uc, R. Olayo, Compos B: Eng, 30 (1999) 321.

Google Scholar

[8] D. Ray, B.K. Sarkar, A.K. Rana, N.R. Bose, Bull Mater Sci, 24 (2001) 129.

Google Scholar

[9] S. Mishra, M. Misra, S.S. Tripathy, S.K. Nayak, A.K. Mohanty. Macromol Mater Eng. 286 (2001)107.

Google Scholar

[10] K. Joseph, S. Thomas, Polymer 37 (1996) 5139.

Google Scholar

[11] I. van de Weyenberg, J. Ivens, A. De Coster, B. Kino, E. Baetens, I. Vepoes, Compos Sci Technol. 63 (2003) 1241.

DOI: 10.1016/s0266-3538(03)00093-9

Google Scholar

[12] J. Anggono, et al., submitted to E3S Web of Conferences (2019).

Google Scholar

[13] L.Y. Mwaikambo, M.P. Ansell, Compos. Sci. Technol. 63 (9) (2003) 1297-1305.

Google Scholar

[14] S.S. Munawar, K. Umemura, S. Kawai, J. of Wood Science 54 (5) (2008) 369-376.

Google Scholar

[15] J. Anggono, S. Sugondo, R. Alim, H. Purwaningsih, A. Wibawa, Mater. Sci. Forum, 923 (2018) 40-46.

DOI: 10.4028/www.scientific.net/msf.923.40

Google Scholar

[16] A.K. Bledzki, A.A. Mamun, Volk, J. Compos. Sci. Tech. 70 (2010) 840-846.

Google Scholar

[17] N. Petchwattana and S. Covavisaruch, J. of Bionic Eng. 10 (2013) 110-117.

Google Scholar

[18] Information on http://www.fao.org/3/x0513e/x0513e21.htm retrieved on 7 April (2019).

Google Scholar

[19] Information on https://www.statista.com/statistics/255945/top-countries-of-destination-for-us-rice-exports-2011/ retrieved on 29 June (2019).

Google Scholar

[20] P.J. Van Soest, R.H. Wine, J. Assoc. Off. Anal. Chem. 50 (1967) 50-55.

Google Scholar

[21] S.M. Luz, A.R. Gonçalves, and A.P. Del'Arco, Jr., Composites Part A: App. Sc. and Manf., 38 (2007) 1455-1461.

Google Scholar

[22] B.S. Ndazi, S. Karlsson, J. V. Tesha, and C. W. Nyahumwa, Compos. Part A: Appl. Sci. & Manuf. 38 (2007) 925-935.

Google Scholar

[23] Information on http://www.sugartech.co.za/density/index.php retrieved on 30 June (2019).

Google Scholar

[24] K.G. Mansaray and A. E. Ghaly, Energy Sources, 19 (9) (1997) 989- 1004.

Google Scholar

[25] G. Excoffier, B. Tousasaint, M.R. Vignon, Biotechnol. Bioenergy, 38 (1991) 1308-1317.

Google Scholar

[26] A. Bartos, et al., submitted to Carbohydrate Polymer Journal (2019).

Google Scholar