Micro-Fibrillated Cellulose Fabrication from Empty Fruit Bunches of Oil Palm

Article Preview

Abstract:

Micro-fibrillated celluloses (MFCs) are made from oil palm empty fruit bunches (EFB). EFB is processed through several stages of the process, including washing, alkalization, and bleaching to remove impurities, lignin, and hemicellulose. Each treatment stage was characterized by differential scanning calorimeter (DSC) and thermogravimetric (TGA) analysis. Morphological analysis was characterized using Scanning Electron Microscope (SEM). The process results show that MFC has an average length and thickness of 450 and 80 microns for coarse fibers respectively, averaging 50 and 5 microns for fine fibers, respectively. Fibrillation fibers appear on the surface of fibers which are treated using alkalization and bleaching processes. The TGA results showed a decrease in weight occurred at a temperature of 40 to 109 °C for the first stage of the heating process and at a temperature of 247 to 382 °C for the second stage. The decrease in fiber weight is caused by evaporation of water content and degradation of cellulose compounds at each stage. The glass transition temperature of MFC was obtained at 236 °C. The thermal stability of cellulose from fibers treated using alkalization and bleaching processes proved the formation of cellulose crystals. Removal of lignin and hemicellulose is shown by the absorption of O-H and C-C bonds in FTIR spectroscopy. From these results, it is stated that micro-fibrillation cellulose is formed well through a series of processes given.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

272-277

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Adel, A. A.El-Gendy, M. A. Diab, R. E. Abou-Zeid, W. K. El-Zawawy, A. Dufresne, Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Industrial Crops and Products, 93 (2016) 161-174.

DOI: 10.1016/j.indcrop.2016.04.043

Google Scholar

[2] H. Liimatainen, J. Sirviö, A. Haapala, O. Hormi, J. Niinimäki, Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydrate Polymers, 83 (2011) 2005-2010.

DOI: 10.1016/j.carbpol.2010.11.007

Google Scholar

[3] A. M. Adel, Z. H. A. El–Wahab, A. A. Ibrahim, M. T. Al–Shemy, Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource technology, 101 (2010) 4446-4455.

DOI: 10.1016/j.biortech.2010.01.047

Google Scholar

[4] A. M. Adel, Z. H. A.El-Wahab, A. A. Ibrahim, , M. T. Al-Shemy, Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83 (2011) 676-687.

DOI: 10.1016/j.carbpol.2010.08.039

Google Scholar

[5] H. A. Krässig, Cellulose-structure. Accessibility and Reactivity. Gordon and Breach Science Publishers, Yverdon, (1993).

Google Scholar

[6] A. J. Svagan, M. A. Azizi Samir, L. A. Berglund, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules, 8 (2007) 2556-2563.

DOI: 10.1021/bm0703160

Google Scholar

[7] B. G. Rånby, Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discussions of the Faraday Society, 11 (1951) 158-164.

DOI: 10.1039/df9511100158

Google Scholar

[8] W. Pattanamanee, Y. Chisti, W. Choorit, Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: effects of the mixture composition. Applied energy, 157 (2015) 245-254.

DOI: 10.1016/j.apenergy.2015.08.027

Google Scholar

[9] E. Derman, R. Abdulla, H.Marbawi, M. K. Sabullah, Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renewable energy, 129 (2018) 285-298.

DOI: 10.1016/j.renene.2018.06.003

Google Scholar

[10] J. W. Park, J. Heo, H. V. Ly, J. Kim, H. Lim, S. S. Kim, Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor. Energy. 179 (2019) 517-527.

DOI: 10.1016/j.energy.2019.04.211

Google Scholar

[11] E. Yuanita, J. N. Pratama, J. H. Mustafa, M. Chalid, Multistages preparation for microfibrillated celluloses based on Arenga pinnata ijuk, fiber. Procedia Chemistry, 16 (2015) 608-615.

DOI: 10.1016/j.proche.2015.12.099

Google Scholar

[12] A. Kumar, Y. S. Negi, V. Choudhary, N. K. Bhardwaj, Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2 (2014) 1-8.

DOI: 10.12691/jmpc-2-1-1

Google Scholar

[13] Ismojo, P. H. Simanulang, A.Zulfia, M. Chalid, Preparation of micro-fibrillated cellulose from sorghum fibre through alkalization and acetylation treatments. In IOP Conference Series: Materials Science and Engineering, 223 (2017) 012057.

DOI: 10.1088/1757-899x/223/1/012057

Google Scholar

[14] U. J. Kim, S. H. Eom, M. Wada, Thermal decomposition of native cellulose: influence on crystallite size. Polymer Degradation and Stability, 95 (2010) 778-781.

DOI: 10.1016/j.polymdegradstab.2010.02.009

Google Scholar

[15] M. Poletto, V. Pistor, M. Zeni, A. J. Zattera, Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 96 (2011) 679-685.

DOI: 10.1016/j.polymdegradstab.2010.12.007

Google Scholar

[16] A. Mandal D.Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(2011) 1291-1299.

DOI: 10.1016/j.carbpol.2011.06.030

Google Scholar

[17] R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, M. Pracella, Composites of poly (L‐lactide) with hemp fibers: Morphology and thermal and mechanical properties. Journal of applied polymer science, 105 (2007) 255-268.

DOI: 10.1002/app.26090

Google Scholar

[18] R. D. Kalita, Y. Nath, M. E. Ochubiojo, A. K. Buragohain, Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca(L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line anti tuberculosis drug. Colloids and Surfaces B: Biointerfaces, 108 (2013) 85–89.

DOI: 10.1016/j.colsurfb.2013.02.016

Google Scholar

[19] A. Alemdar, M. Sain, Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresource Technology, 99 (2008) 1664–1671.

DOI: 10.1016/j.biortech.2007.04.029

Google Scholar

[20] E. M. Maafi, F. Malek, L. Tighzert, P. Dony, Synthesis of polyurethane and characterization of its composites based on alfa cellulose fibers. Journal of Polymer Environment, 18 (2010) 638–646.

DOI: 10.1007/s10924-010-0218-8

Google Scholar

[21] H. Nadji, P. N. Diouf, A. Benaboura, Y. Bedard, B. Riedl, T. Stevanovic, Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresource Technology, 100 (2009) 3585–3592.

DOI: 10.1016/j.biortech.2009.01.074

Google Scholar