[1]
Xin H, Shi M, Gao X C, et al. The effect of different neutral ligands on photoluminescence and electroluminescence properties of ternary terbium complexes[J]. Journal of Physical Chemistry B, 2004, 108(30): 10796-10800.
DOI: 10.1021/jp037816h
Google Scholar
[2]
Vogler A, Kunkely H. Luminescent metal complexes: Diversity of excited states[J]. Topics in Current Chemistry, 2001, 213: 143-182.
DOI: 10.1007/3-540-44447-5_3
Google Scholar
[3]
Gao R, Ho D G, Hernandez B, et al. Bis-cyclometalated Ir(III) complexes as efficient singlet oxygen sensitizers[J]. Journal of the American Chemical Society, 2002, 124(50): 14828-14829.
DOI: 10.1021/ja0280729
Google Scholar
[4]
Li J, Djurovich P I, Alleyne B D, et al. Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands[J]. Inorganic Chemistry, 2005, 44(6): 1713-1727.
DOI: 10.1021/ic048599h
Google Scholar
[5]
Yu X M, Zhou G J, Lam C S, et al. A yellow-emitting iridium complex for use in phosphorescent multiple-emissive-layer white organic light-emitting diodes with high color quality and efficiency[J]. Journal of Organometallic Chemistry, 2008, 693(8-9): 1518-1527.
DOI: 10.1016/j.jorganchem.2007.10.021
Google Scholar
[6]
Kaleta`s, Ba`sak Kükrer, Williams, René M, KöNig B, et al. Strong fluorescence enhancement of 2-bromo-3-(1H-indol-3-yl) maleimide upon coordination to a Lewis-acidic metal complex[J]. Chemical Communications, 2002(7): 776-777.
DOI: 10.1039/b111599e
Google Scholar
[7]
Tropiano M, Kilah N L, Morten M, et al. Reversible luminescence switching of a redox-Active ferrocene–europium dyad[J]. Journal of the American Chemical Society, 2011, 133(31): 11847-11849.
DOI: 10.1021/ja203069s
Google Scholar
[8]
Carlos L D, Rute A S, Veronica D Z, et al. Cheminform abstract: Progress on lanthanide‐based organic—inorganic hybrid phosphors[J]. ChemInform, 2011, 42(22): 11847-11849.
DOI: 10.1002/chin.201122271
Google Scholar
[9]
Eliseeva S V, Bünzli, Jean-Claude G. Lanthanide luminescence for functional materials and bio-sciences[J]. Chemical Society Reviews, 2010, 39(1): 189-227.
DOI: 10.1039/b905604c
Google Scholar
[10]
Kalinovskaya I V, Mirochnik A G. Luminescent properties of compounds of europium(III) with quinaldic acid and β-diketones[J]. Optics and Spectroscopy, 2015, 119(6): 997-999.
DOI: 10.1134/s0030400x15110119
Google Scholar
[11]
Sivakumar S, Reddy M L P, Cowley A H, et al. Lanthanide-Based coordination polymers assembled from derivatives of 3,5-dihydroxy benzoates: Syntheses, crystal structures, and photophysical properties[J]. Inorganic Chemistry, 2011, 50(11): 4882-4891.
DOI: 10.1021/ic2001249
Google Scholar
[12]
Bünzli, Jean-Claude G, Eliseeva S V. Intriguing aspects of lanthanide luminescence[J]. Chemical Science, 2013, 4(5): 1939-1949.
DOI: 10.1039/c3sc22126a
Google Scholar
[13]
Ren X M, Wei C P, Cheng G. Synthesis and luminescence properties of rare earth europium, terbium complexes with β-Diketone[J]. Chinese Journal of Rare Metals, 2012, 36(1): 124-128.
Google Scholar
[14]
Yan G F, Wang Q, Wei B L, et al. Photophysical properties of novel organic europium(III) complexes[D]. Jiangnan University, 2010, 30(10): 2606-2610.
Google Scholar
[15]
Zhai Y F, Hongde X, Cai H J, et al. Thermal and optical properties of Tb(III), Eu(III) and Tb(III)/Eu(III) co-complexed silicone fluorinated acrylate copolymer[J]. Optical Materials, 2015, 45: 161-166.
DOI: 10.1016/j.optmat.2015.03.027
Google Scholar
[16]
Shi J S, Qu D, Zhang S Y. Nephelauxetic effect of electronic cloud for energy levels of 4f~75d configuration of Tb3+ in crystals[J]. Chemical Journal of Chinese Universities, 2006, 27(7): 1303-1306.
Google Scholar
[17]
Shi J S, Qu D, Zhang S Y. Study of spin-allowed and spin-forbidden for 4fN-15d configurations[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(3): 399-402.
Google Scholar
[18]
Ma J. Synthesis and luminescence properties of rare earth samarium photoluminescence materials[D]. Shanxi University of Science and Technology, (2014).
Google Scholar
[19]
Yuan H H. Synthesis of phenanthroline-derivatives & Eu complexes luminescent materials and study on performance[D]. China University of Mining and Technology, (2014).
Google Scholar
[20]
Guo C F. Research status and progress of luminescent materials of rare-earth samarium complexes[J]. Guangzhou Chemistry, 2018, 43(5): 68-72.
Google Scholar
[21]
Du T. Study on the luminescent materials of rare earth samarium complexes[D]. Shaanxi University of Science and Technology, (2018).
Google Scholar
[22]
Zhang W. The studies on the synthesis of novel fluorescence rare earth complexes and the preparation of re-complex/polymer[D]. Beijing University of Chemical Technology, (2006).
Google Scholar
[23]
Yang Y Z. Design, synthesis and application of new europium(III) complex-based luminescent probes for the specific detection of peroxynitrite[D]. Liaoning Normal University, (2017).
Google Scholar
[24]
Dai Z C. Synthesis and application of europium/terbium complex-based luminescent probes[D]. Dalian University of Technolog, (2015).
Google Scholar
[25]
Zhang Z S, Gao Y C, Sheng D P, et al. Synthesis of rare Earth fluorescent complexes europium and their applications in latent fingerprint development[J]. Imaging Science and Photochemistry, 2018, 36(6): 498-506.
Google Scholar
[26]
You X Z. Molecular-based materials——opto-electronic functional compounds[M]. Shanghai Science & Technical publisher, (2001).
Google Scholar
[27]
Chen X F, Liu S H, You X Z. Synthesis, crystal structure and triboluminescence spectrum of 1,4-dimethylpyridinium tetrakis (2-thenoyltrifluoroacetonato) europate[J]. Polyhedron, 1998, 17(11): 1883-1889.
DOI: 10.1016/s0277-5387(97)00519-6
Google Scholar
[28]
Chen B, Feng J. White-light-emitting polymer composite film based on carbon dots and lanthanide complexes[J]. The Journal of Physical Chemistry C, 2015, 119(14): 7865-7872.
DOI: 10.1021/acs.jpcc.5b00208
Google Scholar
[29]
Yang P Y. Preparation and characterization of double rare earth organic complexes light conversion agents[D]. Hefei University of Technology, (2017).
Google Scholar
[30]
Gao X N. Hot-press sintering and chemical durability of fluorapatite ceramic waste form[D]. Southwest University of Science and Technology, (2018).
Google Scholar
[31]
Kawano K, Arai K, Yamada H, et al. Application of rare-earth complexes for photovoltaic precursors[J]. Solar Energy Materials and Solar Cells, 1997, 48(5): 35-41.
DOI: 10.1016/s0927-0248(97)00066-4
Google Scholar
[32]
Oh J H, Song H M, Eom Y K, et al. Wavelength conversion lanthanide(III)-cored complex for highly efficient dye-sensitized solar cells[J]. Bulletin of the Korean Chemical Society, 2011, 32(8): 2743-2749.
DOI: 10.5012/bkcs.2011.32.8.2743
Google Scholar
[33]
Griffini G, Bella F, Nisic F, et al. Multifunctional luminescent down-Shifting fluoropolymer coatings: A straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells[J]. Advanced Energy Materials, 2015, 5(3): 1401312.
DOI: 10.1002/aenm.201401312
Google Scholar
[34]
Qin S J, Yan B. A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine[J]. Sensors and Actuators B Chemical, 2017, 259: 125-132.
DOI: 10.1016/j.snb.2017.12.060
Google Scholar
[35]
Song P. Synthesis and properties of phosphorus multifunctional ligands and their Eu(III) Complexes[D]. Ningxia University, (2017).
Google Scholar
[36]
Fan L. Synthesis, Crystal structure and properties of fluoro-substituted β-diketones complexes[D]. Central China Normal University, (2008).
Google Scholar
[37]
Lapaev D V, Nikiforov V G, Safiullin G M, et al. UV laser-inducedenhancement of photoluminescence intensity in vitrifiedterbium(III) β-diketonate complex film in air[J]. Journal of Luminescence, 2018, 194: 407-413.
DOI: 10.1016/j.jlumin.2017.10.067
Google Scholar
[38]
Lapaev D V, Nikiforov V G, Safiullin G M, et al. Changes in luminescent properties of vitrified films ofterbium(III) β- diketonate complex upon UV laser ir-radiation[J]. Journal of Luminescence, 2016, 175: 106-112.
DOI: 10.1016/j.jlumin.2016.02.006
Google Scholar
[39]
Lapaev D V, Nikiforov V G, Lobkov V S, et al. Reus-able temperature - sensitive luminescent material basedon vitrified film of europium(III) β-diketonate complex[J]. Optical Materials, 2018, 75: 787-795.
DOI: 10.1016/j.optmat.2017.11.042
Google Scholar
[40]
Yu J, Xu Z H, Xu G X, et al. The synthesis and characterization of novel luminescent europium(III) complexes with mixed ligand of HTTA and cryptand 2.2[J]. Acta Chimica Sinica, 1997, 55(2): 153-159.
Google Scholar
[41]
Xiao Z H, Tan S T, Zhou H B, et al. Synthesis of 2-allyl-1,3-diphenyl-1,3-propdione and photoluminescence properties of its rare earth complexes[J]. Journal of the Chinese Rare Earth Society, 2002, 20(6): 667-671.
Google Scholar
[42]
Tan S T, Yang N, Zhao B, et al. Synthesis and photoluminescent property of 4-n-octyloxydibenzoylmethane-phenanthroline-europium complex[J]. Chinese Journal of Liquid Crystals And Displays, 2002, 17(5): 341-346.
Google Scholar
[43]
Liu S G, Pan RK, Zhou X P, et al. Blue-light excitable europium(III) complex based on deprotonated 1-(9-ethyl-6,8-dimethyl-9H-carbazol-2-yl)-4,4,4-trifluorobutane-1,3-dionate and 1, 10-phenanthroline[J]. Inorganica Chimica Acta, 2013, 395(30): 119-123.
DOI: 10.1016/j.ica.2012.10.026
Google Scholar
[44]
Li Y Y, Yan T, Wang D M, et al. The luminescent mechanism and application of rare earth complex[J]. Journal of Jinan University(Science and Technology), 2005, 19(2): 113-119.
Google Scholar
[45]
Yan B, Zhang H J, Wang S B, et al. Photophysical properties of rare earth complexes with 3,4-furandicarboxylic acid and 1,10-phenanthroline[J]. Journal of the Chinese Rare Earth Society, 1998, 16(4): 375-378.
Google Scholar
[46]
Ma J. Schiff-based derived from 5-amino-1,10-phenanthroline synthesis and characterization [J]. Journal of Nanjing University of Chemical Technology, 1999, 24(4): 65-67.
Google Scholar
[47]
Du Y T, Wu C, Zhong Y Y, et al. Preparation and photoelectric properties of thenoyltrifluoroacetone-phenanthroline schiff base derivatives-europium complexes[J]. Science & Technology in Chemical Industry, 2017, 25(6): 17-22.
Google Scholar
[48]
Kong F R, Huang R, Wang D, et al. Preparation and luminescent properties of europium(III) complexes with silane-modified phthaloyl chloride and 1,10-phenanthroline[J]. Chinese Rare Earth, 2019, 40(1): 33-39.
Google Scholar
[49]
Sano T, Fujita M, Fujii T, Novel europium complex for electroluminescent devices with sharp red emission[J]. Japanese Journal of Applied Physics, 1995, Vol. 34: 1883-1887.
DOI: 10.1143/jjap.34.1883
Google Scholar
[50]
Liang C. J. Zhao D. Hong Z. R. Improved performance of electroluminescent devices based on an europium complex[J]. Applied Physics Letters, 2000, 76(1): 67-69.
Google Scholar
[51]
Li W, Zeng C Y, Han H, et al. Preparation and study on fluorescent property of a new type of europium complex[J]. New Chemical Materials, 2017, 45(1): 50-52.
Google Scholar
[52]
Yin B. Synthesis, structure and property of Eu(III) and Tb(III) complexes with poiypyridine carboxylic acid species[D]. Nanchang University, (2007).
Google Scholar
[53]
Dong L Z, Hao T T, Liu Z Y, et al. Crystal structure and fluorescence spectrum of E (III) complex based on naphthalene acetic acid and 2,2'-bipyridine[J]. Journal of Yanan University(Natural Science Edition), 2013, 32(4): 37-40.
Google Scholar
[54]
Zhu Y C, Li H Y, Xu Q L, et al. Synthesis and luminescence properties of europium(III) complexes based on bipyridine derivatives with carbazole moieties[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1491-1496.
Google Scholar
[55]
Peng H N. Modification of 2,2'-bipyridine and binaphthalene[D]. Nanchang University, (2008).
Google Scholar
[56]
Li P J. Preparation and properties of Eu(III) complexes with carboxylic of oxids[D]. Southwest University of Science and Technology, (2015).
Google Scholar
[57]
Sun B, Zhao Y, Xu R F, et al. Fluoresce studies on the mixed solid complexes of europium-terbium-1,10-phenanthroline-phthalate systems[J]. Spectroscopy and Spectral Analysis, 1997, 17(2): 25-29.
Google Scholar
[58]
Li X, Bian Z Q, Jin L P, Huang S H. Crystal structure and luminescence of a europium 3-methoxybenzoate complex with 2,2'-bipyridine[J]. Journal of Molecular Structure, 2000, 522(1): 117-123.
DOI: 10.1016/s0022-2860(99)00353-1
Google Scholar
[59]
Zhao X H, Huang K L, Liu Z G. Synthesis and luminescent properties of Eu complexes of 2-thienyltrifluoroacetonate, terephthalic acid and trioctylphosphine oxide[J]. Journal of alloys and compounds, 2007, 437(1): 254-259.
DOI: 10.1016/j.jallcom.2006.07.094
Google Scholar
[60]
Bretonnière Y, Mazzanti M, Pécaut J, Olmstead M M. Cation-controlled self-Assembly of a hexameric europium wheel[J]. Journal of the American Chemical Society, 2002, 124(31): 9012-9013.
DOI: 10.1021/ja012177e
Google Scholar
[61]
Valery N. K, Christian M, Stefan M. Strong emission increase of a dicarboxyterpyridene europium(III) complex in the presencc of citrate and hydrogen peroxide[J]. Inorganica Chimica Acta, 2005, 358(7): 2445-2448.
DOI: 10.1016/j.ica.2005.01.015
Google Scholar
[62]
Yan B, Zhang H, Wang S. et al. Luminescence properties of rare-earth (Eu3+ and Tb3+) complexes with paraaminobenzoic acid and 1,10-phenanthroline incorporated into a silica matrix by sol-gel method. Materials Research Bulletin[J], 1998, 33(10): 1517-1525.
DOI: 10.1016/s0025-5408(98)00133-0
Google Scholar
[63]
Zhou J, Su M Z. Studies on the luminescene of Eu3+-doped lanthanum phosphate[J]. Chemical Journal of Chinese Universities, 1993, 14(3): 314-316.
Google Scholar
[64]
Gao C Y, Yang B, Shen J C. Molecule design and syntheses of optical resins with high refractive index (Ⅲ)——synthesis of MMDMA and preparation of its copolymer resins[J]. Chemical Journal of Chinese Universities, 1998, 19(11): 1840-1843.
Google Scholar
[65]
Wolff N E, Pressley RJ. Optical laser action in Eu3+-containing organic matrix[J]. Applied Physics Letters, 1963, 2(8): 152-154.
Google Scholar
[66]
Okamoto Y. Ueba Y, Dzhanibekov N F, et al. Characerization of ion-containing polymer structures using rare earth metal fluorescene Probes[J]. Macromolecules, 1980, 14(1): 17-22.
DOI: 10.1021/ma50002a003
Google Scholar
[67]
Banks E, Okamoto Y, Ueba Y. Synthesis and characterization of rare earth metal-containing polymers. I. Fluorescent properties of ionomers containing Dy3+, Er3+, Eu3+, and Sm3+[J]. Journal of Applied Polymer Science, 2010, 25(3): 359-368.
DOI: 10.1002/app.1980.070250303
Google Scholar
[68]
Okamoto Y, Wang S S, Zhu K J, et al. Synthesis, Characterization and Applications of Rare Earth MetalIon Chelating Polymers[M]. Metal-Containing Poly-meric Systems. 1985, 425-450.
DOI: 10.1007/978-1-4615-9415-4_24
Google Scholar
[69]
Liu X S, Guan X L, Su Z X. Synthesis and spectroscopic studies of europium polymer complex[J]. New Chemical Materials, 2007, 35(S1): 43-46.
Google Scholar
[70]
Liu J P. Lanthanide complexes of functional nanospheres andtheir functional composite materials[D]. Qindao University, (2006).
Google Scholar
[71]
Wei W, Sheng W C, Zhou Z P, et al. Studies on synthesis and properties of rare earth complexes and copolymers[D]. Fine Chemicals, 2010, 27(8): 729-742.
Google Scholar
[72]
Jiao C J, Zhou Y F, Zhang H F, et al. Research progress and application of rare earth organic complexes[J]. Jiangxi Chemical Industry, 2019(2): 61-65.
Google Scholar
[73]
Sabbatini N, Pellonte S, Blasse G. The luminescence of the rare earth crytatets[Tb⊂2.2.1]3+ and [Sm⊂2.2.1]3+[J]. Physical Chemistry, 1986, 129(6): 541-545.
DOI: 10.1016/0009-2614(86)80397-9
Google Scholar
[74]
Leyton P, Sanchezcortes S, Camposvallette M, et al. Surface-Enhanced Micro-Raman Detection and Characterization of Calix Arene Polycyclic Aromatic Hydrocarbon Host Guest Complexes[J]. Applied Spectroscopy, 2005, 59(8): 1009-15.
DOI: 10.1366/0003702054615160
Google Scholar
[75]
Zhang H J, Yan B. Progress on rare earth complexes with calixarenes[J]. Chemical Research and Application. 1998, 10(2): 111-117.
Google Scholar
[76]
Ueba Y, Banks E, Okamoto Y. Investigation on thesynthesis and characterization of rare earth metal-containing polymers. Fluorescence properties of Eu3+-polymer complexes containing β-diketone ligand[J]. Journal of Applied polymer Science. 1980, 25(12): 2007-2017.
DOI: 10.1002/app.1980.070250917
Google Scholar