Research Progress of Europium Complexes Luminescent Materials

Article Preview

Abstract:

Rare earth is a general term for 17 chemical elements with atomic numbers of 21, 39 and 57~71 in group IIIB in the periodic table. Lanthanide complexes can show unique linear emission bands and have very long luminous lifetime. Lanthanide complexes can be used in electroluminous (EL) devices, lasers and light-emitting biosensors in visible and near-infrared spectra. Therefore, it is of great significance to find new lanthanide luminous complexes. The emission peak of rare earth europium complex is mainly located in the characteristic emission wavelength of 5D07F2 of Eu3+. The emission wavelength is about 613nm, and it shows the fluorescence characteristics of europium ions. In order to further study the subject, this paper will focus on the current research on luminous rare earth complexes-organic complexes centered on Eu3+(emission red light). This paper summarizes the luminous principle of rare earth europium and its application in some fields, and expounds the existing problems at present and looks forward to its application prospect in the future.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1001)

Pages:

1-15

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xin H, Shi M, Gao X C, et al. The effect of different neutral ligands on photoluminescence and electroluminescence properties of ternary terbium complexes[J]. Journal of Physical Chemistry B, 2004, 108(30): 10796-10800.

DOI: 10.1021/jp037816h

Google Scholar

[2] Vogler A, Kunkely H. Luminescent metal complexes: Diversity of excited states[J]. Topics in Current Chemistry, 2001, 213: 143-182.

DOI: 10.1007/3-540-44447-5_3

Google Scholar

[3] Gao R, Ho D G, Hernandez B, et al. Bis-cyclometalated Ir(III) complexes as efficient singlet oxygen sensitizers[J]. Journal of the American Chemical Society, 2002, 124(50): 14828-14829.

DOI: 10.1021/ja0280729

Google Scholar

[4] Li J, Djurovich P I, Alleyne B D, et al. Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands[J]. Inorganic Chemistry, 2005, 44(6): 1713-1727.

DOI: 10.1021/ic048599h

Google Scholar

[5] Yu X M, Zhou G J, Lam C S, et al. A yellow-emitting iridium complex for use in phosphorescent multiple-emissive-layer white organic light-emitting diodes with high color quality and efficiency[J]. Journal of Organometallic Chemistry, 2008, 693(8-9): 1518-1527.

DOI: 10.1016/j.jorganchem.2007.10.021

Google Scholar

[6] Kaleta`s, Ba`sak Kükrer, Williams, René M, KöNig B, et al. Strong fluorescence enhancement of 2-bromo-3-(1H-indol-3-yl) maleimide upon coordination to a Lewis-acidic metal complex[J]. Chemical Communications, 2002(7): 776-777.

DOI: 10.1039/b111599e

Google Scholar

[7] Tropiano M, Kilah N L, Morten M, et al. Reversible luminescence switching of a redox-Active ferrocene–europium dyad[J]. Journal of the American Chemical Society, 2011, 133(31): 11847-11849.

DOI: 10.1021/ja203069s

Google Scholar

[8] Carlos L D, Rute A S, Veronica D Z, et al. Cheminform abstract: Progress on lanthanide‐based organic—inorganic hybrid phosphors[J]. ChemInform, 2011, 42(22): 11847-11849.

DOI: 10.1002/chin.201122271

Google Scholar

[9] Eliseeva S V, Bünzli, Jean-Claude G. Lanthanide luminescence for functional materials and bio-sciences[J]. Chemical Society Reviews, 2010, 39(1): 189-227.

DOI: 10.1039/b905604c

Google Scholar

[10] Kalinovskaya I V, Mirochnik A G. Luminescent properties of compounds of europium(III) with quinaldic acid and β-diketones[J]. Optics and Spectroscopy, 2015, 119(6): 997-999.

DOI: 10.1134/s0030400x15110119

Google Scholar

[11] Sivakumar S, Reddy M L P, Cowley A H, et al. Lanthanide-Based coordination polymers assembled from derivatives of 3,5-dihydroxy benzoates: Syntheses, crystal structures, and photophysical properties[J]. Inorganic Chemistry, 2011, 50(11): 4882-4891.

DOI: 10.1021/ic2001249

Google Scholar

[12] Bünzli, Jean-Claude G, Eliseeva S V. Intriguing aspects of lanthanide luminescence[J]. Chemical Science, 2013, 4(5): 1939-1949.

DOI: 10.1039/c3sc22126a

Google Scholar

[13] Ren X M, Wei C P, Cheng G. Synthesis and luminescence properties of rare earth europium, terbium complexes with β-Diketone[J]. Chinese Journal of Rare Metals, 2012, 36(1): 124-128.

Google Scholar

[14] Yan G F, Wang Q, Wei B L, et al. Photophysical properties of novel organic europium(III) complexes[D]. Jiangnan University, 2010, 30(10): 2606-2610.

Google Scholar

[15] Zhai Y F, Hongde X, Cai H J, et al. Thermal and optical properties of Tb(III), Eu(III) and Tb(III)/Eu(III) co-complexed silicone fluorinated acrylate copolymer[J]. Optical Materials, 2015, 45: 161-166.

DOI: 10.1016/j.optmat.2015.03.027

Google Scholar

[16] Shi J S, Qu D, Zhang S Y. Nephelauxetic effect of electronic cloud for energy levels of 4f~75d configuration of Tb3+ in crystals[J]. Chemical Journal of Chinese Universities, 2006, 27(7): 1303-1306.

Google Scholar

[17] Shi J S, Qu D, Zhang S Y. Study of spin-allowed and spin-forbidden for 4fN-15d configurations[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(3): 399-402.

Google Scholar

[18] Ma J. Synthesis and luminescence properties of rare earth samarium photoluminescence materials[D]. Shanxi University of Science and Technology, (2014).

Google Scholar

[19] Yuan H H. Synthesis of phenanthroline-derivatives & Eu complexes luminescent materials and study on performance[D]. China University of Mining and Technology, (2014).

Google Scholar

[20] Guo C F. Research status and progress of luminescent materials of rare-earth samarium complexes[J]. Guangzhou Chemistry, 2018, 43(5): 68-72.

Google Scholar

[21] Du T. Study on the luminescent materials of rare earth samarium complexes[D]. Shaanxi University of Science and Technology, (2018).

Google Scholar

[22] Zhang W. The studies on the synthesis of novel fluorescence rare earth complexes and the preparation of re-complex/polymer[D]. Beijing University of Chemical Technology, (2006).

Google Scholar

[23] Yang Y Z. Design, synthesis and application of new europium(III) complex-based luminescent probes for the specific detection of peroxynitrite[D]. Liaoning Normal University, (2017).

Google Scholar

[24] Dai Z C. Synthesis and application of europium/terbium complex-based luminescent probes[D]. Dalian University of Technolog, (2015).

Google Scholar

[25] Zhang Z S, Gao Y C, Sheng D P, et al. Synthesis of rare Earth fluorescent complexes europium and their applications in latent fingerprint development[J]. Imaging Science and Photochemistry, 2018, 36(6): 498-506.

Google Scholar

[26] You X Z. Molecular-based materials——opto-electronic functional compounds[M]. Shanghai Science & Technical publisher, (2001).

Google Scholar

[27] Chen X F, Liu S H, You X Z. Synthesis, crystal structure and triboluminescence spectrum of 1,4-dimethylpyridinium tetrakis (2-thenoyltrifluoroacetonato) europate[J]. Polyhedron, 1998, 17(11): 1883-1889.

DOI: 10.1016/s0277-5387(97)00519-6

Google Scholar

[28] Chen B, Feng J. White-light-emitting polymer composite film based on carbon dots and lanthanide complexes[J]. The Journal of Physical Chemistry C, 2015, 119(14): 7865-7872.

DOI: 10.1021/acs.jpcc.5b00208

Google Scholar

[29] Yang P Y. Preparation and characterization of double rare earth organic complexes light conversion agents[D]. Hefei University of Technology, (2017).

Google Scholar

[30] Gao X N. Hot-press sintering and chemical durability of fluorapatite ceramic waste form[D]. Southwest University of Science and Technology, (2018).

Google Scholar

[31] Kawano K, Arai K, Yamada H, et al. Application of rare-earth complexes for photovoltaic precursors[J]. Solar Energy Materials and Solar Cells, 1997, 48(5): 35-41.

DOI: 10.1016/s0927-0248(97)00066-4

Google Scholar

[32] Oh J H, Song H M, Eom Y K, et al. Wavelength conversion lanthanide(III)-cored complex for highly efficient dye-sensitized solar cells[J]. Bulletin of the Korean Chemical Society, 2011, 32(8): 2743-2749.

DOI: 10.5012/bkcs.2011.32.8.2743

Google Scholar

[33] Griffini G, Bella F, Nisic F, et al. Multifunctional luminescent down-Shifting fluoropolymer coatings: A straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells[J]. Advanced Energy Materials, 2015, 5(3): 1401312.

DOI: 10.1002/aenm.201401312

Google Scholar

[34] Qin S J, Yan B. A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine[J]. Sensors and Actuators B Chemical, 2017, 259: 125-132.

DOI: 10.1016/j.snb.2017.12.060

Google Scholar

[35] Song P. Synthesis and properties of phosphorus multifunctional ligands and their Eu(III) Complexes[D]. Ningxia University, (2017).

Google Scholar

[36] Fan L. Synthesis, Crystal structure and properties of fluoro-substituted β-diketones complexes[D]. Central China Normal University, (2008).

Google Scholar

[37] Lapaev D V, Nikiforov V G, Safiullin G M, et al. UV laser-inducedenhancement of photoluminescence intensity in vitrifiedterbium(III) β-diketonate complex film in air[J]. Journal of Luminescence, 2018, 194: 407-413.

DOI: 10.1016/j.jlumin.2017.10.067

Google Scholar

[38] Lapaev D V, Nikiforov V G, Safiullin G M, et al. Changes in luminescent properties of vitrified films ofterbium(III) β- diketonate complex upon UV laser ir-radiation[J]. Journal of Luminescence, 2016, 175: 106-112.

DOI: 10.1016/j.jlumin.2016.02.006

Google Scholar

[39] Lapaev D V, Nikiforov V G, Lobkov V S, et al. Reus-able temperature - sensitive luminescent material basedon vitrified film of europium(III) β-diketonate complex[J]. Optical Materials, 2018, 75: 787-795.

DOI: 10.1016/j.optmat.2017.11.042

Google Scholar

[40] Yu J, Xu Z H, Xu G X, et al. The synthesis and characterization of novel luminescent europium(III) complexes with mixed ligand of HTTA and cryptand 2.2[J]. Acta Chimica Sinica, 1997, 55(2): 153-159.

Google Scholar

[41] Xiao Z H, Tan S T, Zhou H B, et al. Synthesis of 2-allyl-1,3-diphenyl-1,3-propdione and photoluminescence properties of its rare earth complexes[J]. Journal of the Chinese Rare Earth Society, 2002, 20(6): 667-671.

Google Scholar

[42] Tan S T, Yang N, Zhao B, et al. Synthesis and photoluminescent property of 4-n-octyloxydibenzoylmethane-phenanthroline-europium complex[J]. Chinese Journal of Liquid Crystals And Displays, 2002, 17(5): 341-346.

Google Scholar

[43] Liu S G, Pan RK, Zhou X P, et al. Blue-light excitable europium(III) complex based on deprotonated 1-(9-ethyl-6,8-dimethyl-9H-carbazol-2-yl)-4,4,4-trifluorobutane-1,3-dionate and 1, 10-phenanthroline[J]. Inorganica Chimica Acta, 2013, 395(30): 119-123.

DOI: 10.1016/j.ica.2012.10.026

Google Scholar

[44] Li Y Y, Yan T, Wang D M, et al. The luminescent mechanism and application of rare earth complex[J]. Journal of Jinan University(Science and Technology), 2005, 19(2): 113-119.

Google Scholar

[45] Yan B, Zhang H J, Wang S B, et al. Photophysical properties of rare earth complexes with 3,4-furandicarboxylic acid and 1,10-phenanthroline[J]. Journal of the Chinese Rare Earth Society, 1998, 16(4): 375-378.

Google Scholar

[46] Ma J. Schiff-based derived from 5-amino-1,10-phenanthroline synthesis and characterization [J]. Journal of Nanjing University of Chemical Technology, 1999, 24(4): 65-67.

Google Scholar

[47] Du Y T, Wu C, Zhong Y Y, et al. Preparation and photoelectric properties of thenoyltrifluoroacetone-phenanthroline schiff base derivatives-europium complexes[J]. Science & Technology in Chemical Industry, 2017, 25(6): 17-22.

Google Scholar

[48] Kong F R, Huang R, Wang D, et al. Preparation and luminescent properties of europium(III) complexes with silane-modified phthaloyl chloride and 1,10-phenanthroline[J]. Chinese Rare Earth, 2019, 40(1): 33-39.

Google Scholar

[49] Sano T, Fujita M, Fujii T, Novel europium complex for electroluminescent devices with sharp red emission[J]. Japanese Journal of Applied Physics, 1995, Vol. 34: 1883-1887.

DOI: 10.1143/jjap.34.1883

Google Scholar

[50] Liang C. J. Zhao D. Hong Z. R. Improved performance of electroluminescent devices based on an europium complex[J]. Applied Physics Letters, 2000, 76(1): 67-69.

Google Scholar

[51] Li W, Zeng C Y, Han H, et al. Preparation and study on fluorescent property of a new type of europium complex[J]. New Chemical Materials, 2017, 45(1): 50-52.

Google Scholar

[52] Yin B. Synthesis, structure and property of Eu(III) and Tb(III) complexes with poiypyridine carboxylic acid species[D]. Nanchang University, (2007).

Google Scholar

[53] Dong L Z, Hao T T, Liu Z Y, et al. Crystal structure and fluorescence spectrum of E (III) complex based on naphthalene acetic acid and 2,2'-bipyridine[J]. Journal of Yanan University(Natural Science Edition), 2013, 32(4): 37-40.

Google Scholar

[54] Zhu Y C, Li H Y, Xu Q L, et al. Synthesis and luminescence properties of europium(III) complexes based on bipyridine derivatives with carbazole moieties[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1491-1496.

Google Scholar

[55] Peng H N. Modification of 2,2'-bipyridine and binaphthalene[D]. Nanchang University, (2008).

Google Scholar

[56] Li P J. Preparation and properties of Eu(III) complexes with carboxylic of oxids[D]. Southwest University of Science and Technology, (2015).

Google Scholar

[57] Sun B, Zhao Y, Xu R F, et al. Fluoresce studies on the mixed solid complexes of europium-terbium-1,10-phenanthroline-phthalate systems[J]. Spectroscopy and Spectral Analysis, 1997, 17(2): 25-29.

Google Scholar

[58] Li X, Bian Z Q, Jin L P, Huang S H. Crystal structure and luminescence of a europium 3-methoxybenzoate complex with 2,2'-bipyridine[J]. Journal of Molecular Structure, 2000, 522(1): 117-123.

DOI: 10.1016/s0022-2860(99)00353-1

Google Scholar

[59] Zhao X H, Huang K L, Liu Z G. Synthesis and luminescent properties of Eu complexes of 2-thienyltrifluoroacetonate, terephthalic acid and trioctylphosphine oxide[J]. Journal of alloys and compounds, 2007, 437(1): 254-259.

DOI: 10.1016/j.jallcom.2006.07.094

Google Scholar

[60] Bretonnière Y, Mazzanti M, Pécaut J, Olmstead M M. Cation-controlled self-Assembly of a hexameric europium wheel[J]. Journal of the American Chemical Society, 2002, 124(31): 9012-9013.

DOI: 10.1021/ja012177e

Google Scholar

[61] Valery N. K, Christian M, Stefan M. Strong emission increase of a dicarboxyterpyridene europium(III) complex in the presencc of citrate and hydrogen peroxide[J]. Inorganica Chimica Acta, 2005, 358(7): 2445-2448.

DOI: 10.1016/j.ica.2005.01.015

Google Scholar

[62] Yan B, Zhang H, Wang S. et al. Luminescence properties of rare-earth (Eu3+ and Tb3+) complexes with paraaminobenzoic acid and 1,10-phenanthroline incorporated into a silica matrix by sol-gel method. Materials Research Bulletin[J], 1998, 33(10): 1517-1525.

DOI: 10.1016/s0025-5408(98)00133-0

Google Scholar

[63] Zhou J, Su M Z. Studies on the luminescene of Eu3+-doped lanthanum phosphate[J]. Chemical Journal of Chinese Universities, 1993, 14(3): 314-316.

Google Scholar

[64] Gao C Y, Yang B, Shen J C. Molecule design and syntheses of optical resins with high refractive index (Ⅲ)——synthesis of MMDMA and preparation of its copolymer resins[J]. Chemical Journal of Chinese Universities, 1998, 19(11): 1840-1843.

Google Scholar

[65] Wolff N E, Pressley RJ. Optical laser action in Eu3+-containing organic matrix[J]. Applied Physics Letters, 1963, 2(8): 152-154.

Google Scholar

[66] Okamoto Y. Ueba Y, Dzhanibekov N F, et al. Characerization of ion-containing polymer structures using rare earth metal fluorescene Probes[J]. Macromolecules, 1980, 14(1): 17-22.

DOI: 10.1021/ma50002a003

Google Scholar

[67] Banks E, Okamoto Y, Ueba Y. Synthesis and characterization of rare earth metal-containing polymers. I. Fluorescent properties of ionomers containing Dy3+, Er3+, Eu3+, and Sm3+[J]. Journal of Applied Polymer Science, 2010, 25(3): 359-368.

DOI: 10.1002/app.1980.070250303

Google Scholar

[68] Okamoto Y, Wang S S, Zhu K J, et al. Synthesis, Characterization and Applications of Rare Earth MetalIon Chelating Polymers[M]. Metal-Containing Poly-meric Systems. 1985, 425-450.

DOI: 10.1007/978-1-4615-9415-4_24

Google Scholar

[69] Liu X S, Guan X L, Su Z X. Synthesis and spectroscopic studies of europium polymer complex[J]. New Chemical Materials, 2007, 35(S1): 43-46.

Google Scholar

[70] Liu J P. Lanthanide complexes of functional nanospheres andtheir functional composite materials[D]. Qindao University, (2006).

Google Scholar

[71] Wei W, Sheng W C, Zhou Z P, et al. Studies on synthesis and properties of rare earth complexes and copolymers[D]. Fine Chemicals, 2010, 27(8): 729-742.

Google Scholar

[72] Jiao C J, Zhou Y F, Zhang H F, et al. Research progress and application of rare earth organic complexes[J]. Jiangxi Chemical Industry, 2019(2): 61-65.

Google Scholar

[73] Sabbatini N, Pellonte S, Blasse G. The luminescence of the rare earth crytatets[Tb⊂2.2.1]3+ and [Sm⊂2.2.1]3+[J]. Physical Chemistry, 1986, 129(6): 541-545.

DOI: 10.1016/0009-2614(86)80397-9

Google Scholar

[74] Leyton P, Sanchezcortes S, Camposvallette M, et al. Surface-Enhanced Micro-Raman Detection and Characterization of Calix Arene Polycyclic Aromatic Hydrocarbon Host Guest Complexes[J]. Applied Spectroscopy, 2005, 59(8): 1009-15.

DOI: 10.1366/0003702054615160

Google Scholar

[75] Zhang H J, Yan B. Progress on rare earth complexes with calixarenes[J]. Chemical Research and Application. 1998, 10(2): 111-117.

Google Scholar

[76] Ueba Y, Banks E, Okamoto Y. Investigation on thesynthesis and characterization of rare earth metal-containing polymers. Fluorescence properties of Eu3+-polymer complexes containing β-diketone ligand[J]. Journal of Applied polymer Science. 1980, 25(12): 2007-2017.

DOI: 10.1002/app.1980.070250917

Google Scholar