The Adsorption of NH3 on the FeS2 (100) Surface: A First-Principles Investigation

Article Preview

Abstract:

Using first-principles calculations, we have investigated the adsorption of NHx (x =1, 2 or 3) on the FeS2 (100) surface. The adsorption configurations and adsorption energies were determined. Our calculations showed that the NHx prefers to adsorb on the surface Fe site via N atom. The NH molecule displays the strongest interaction with the FeS2 (100) surface among the three adsorbates, while NH3 is bound relatively weak to the surface. The analysis of the density of states (DOS) showed a strong hybridization between N 2p and Fe 3d states, especially for NH and NH2 adsorption. The NH3 adsorption at full coverage was found to be less favoured than at partial coverage because of the steric repulsion among the adsorbates, in agreement with the experiment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1001)

Pages:

22-27

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Rickard, G.W. Luther, Chemistry of iron sulfides, Chem. Rev. 107 (2007) 514-562.

DOI: 10.1021/cr0503658

Google Scholar

[2] R. Hu, H. Zhao, J. Zhang, Q. Liang, Y. Wang, B. Guo, R. Dangol, Y. Zheng, Q. Yan, J. Zhu, Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion–sulfurization process for high-capacity sodium-ion batteries, Nanoscale 11 (2019) 178-184.

DOI: 10.1039/c8nr06675b

Google Scholar

[3] J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics, J. Am. Chem. Soc. 133 (2011) 716-719.

DOI: 10.1021/ja1096368

Google Scholar

[4] X.Y. Chen, Z.H. Wang, X. Wang, J.X. Wan, J.W. Liu, Y.T. Qian, Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties, Inorg. Chem. 44 (2005) 951-954.

DOI: 10.1021/ic049049m

Google Scholar

[5] R. Murphy, D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep. 64 (2009) 1-45.

Google Scholar

[6] C. Morales, E. Flores, S. Yoda, M.A. Nino, D.M.Y. Marero, L. Soriano, J. Rojo, J.R. Ares, I.J. Ferrer, C. Sanchez, An XPS investigation on the influence of the substrate and growth conditions on pyrite thin films surface composition, Appl. Surf. Sci. 492 (2019) 651-660.

DOI: 10.1016/j.apsusc.2019.06.214

Google Scholar

[7] K. Andersson, M. Nyberg, H. Ogasawara, D. Nordlund, T. Kendelewicz, C.S. Doyle, G.E. Brown, L.G.M. Pettersson, A. Nilsson, Experimental and theoretical characterization of the structure of defects at the pyrite FeS2 (100) surface, Phys. Rev. B 70 (2004) 195404.

DOI: 10.1103/physrevb.70.195404

Google Scholar

[8] Y.N. Zhang, J. Hu, M. Law, R.Q. Wu, Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface, Phys. Rev. B 85 (2012) 085314.

Google Scholar

[9] A. Stirling, M. Bernasconi, M. Parrinello, Ab initio simulation of water interaction with the (100) surface of pyrite, J. Chem. Phys. 118 (2003) 8917-8926.

DOI: 10.1063/1.1566936

Google Scholar

[10] J. Chen, X. Long, Y. Chen, Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: A DFT Study, J. Phys. Chem. C 118 (2014) 11657-11665.

DOI: 10.1021/jp5000478

Google Scholar

[11] M. Sacchi, M.C.E. Galbraith, S.J. Jenkins, The interaction of iron pyrite with oxygen, nitrogen and nitrogen oxides: a first-principles study, Phys. Chem. Chem. Phys. 14 (2012) 3627-3633.

DOI: 10.1039/c2cp23558g

Google Scholar

[12] T. Liu, I. Temprano, S.J. Jenkins, D.A. King, S.M. Driver, Low temperature synthesis of NH3 from atomic N and H at the surfaces of FeS2{100} crystals, J. Phys. Chem. C 117 (2013) 10990-10998.

DOI: 10.1021/jp308872y

Google Scholar

[13] R. Schlögl, Catalytic Synthesis of Ammonia—A Never-Ending Story",, Angew. Chem. Int. Ed. 42 (2003) 2004-2008.

DOI: 10.1002/anie.200301553

Google Scholar

[14] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[15] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[16] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[17] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[18] W. Paszkowicz, J.A. Leiro, Rietveld refinement study of pyrite crystals, J. Alloy. Compd. 401 (2005) 289-295.

DOI: 10.1016/j.jallcom.2005.02.052

Google Scholar