[1]
D. Rickard, G.W. Luther, Chemistry of iron sulfides, Chem. Rev. 107 (2007) 514-562.
DOI: 10.1021/cr0503658
Google Scholar
[2]
R. Hu, H. Zhao, J. Zhang, Q. Liang, Y. Wang, B. Guo, R. Dangol, Y. Zheng, Q. Yan, J. Zhu, Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion–sulfurization process for high-capacity sodium-ion batteries, Nanoscale 11 (2019) 178-184.
DOI: 10.1039/c8nr06675b
Google Scholar
[3]
J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics, J. Am. Chem. Soc. 133 (2011) 716-719.
DOI: 10.1021/ja1096368
Google Scholar
[4]
X.Y. Chen, Z.H. Wang, X. Wang, J.X. Wan, J.W. Liu, Y.T. Qian, Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties, Inorg. Chem. 44 (2005) 951-954.
DOI: 10.1021/ic049049m
Google Scholar
[5]
R. Murphy, D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep. 64 (2009) 1-45.
Google Scholar
[6]
C. Morales, E. Flores, S. Yoda, M.A. Nino, D.M.Y. Marero, L. Soriano, J. Rojo, J.R. Ares, I.J. Ferrer, C. Sanchez, An XPS investigation on the influence of the substrate and growth conditions on pyrite thin films surface composition, Appl. Surf. Sci. 492 (2019) 651-660.
DOI: 10.1016/j.apsusc.2019.06.214
Google Scholar
[7]
K. Andersson, M. Nyberg, H. Ogasawara, D. Nordlund, T. Kendelewicz, C.S. Doyle, G.E. Brown, L.G.M. Pettersson, A. Nilsson, Experimental and theoretical characterization of the structure of defects at the pyrite FeS2 (100) surface, Phys. Rev. B 70 (2004) 195404.
DOI: 10.1103/physrevb.70.195404
Google Scholar
[8]
Y.N. Zhang, J. Hu, M. Law, R.Q. Wu, Effect of surface stoichiometry on the band gap of the pyrite FeS2 (100) surface, Phys. Rev. B 85 (2012) 085314.
Google Scholar
[9]
A. Stirling, M. Bernasconi, M. Parrinello, Ab initio simulation of water interaction with the (100) surface of pyrite, J. Chem. Phys. 118 (2003) 8917-8926.
DOI: 10.1063/1.1566936
Google Scholar
[10]
J. Chen, X. Long, Y. Chen, Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: A DFT Study, J. Phys. Chem. C 118 (2014) 11657-11665.
DOI: 10.1021/jp5000478
Google Scholar
[11]
M. Sacchi, M.C.E. Galbraith, S.J. Jenkins, The interaction of iron pyrite with oxygen, nitrogen and nitrogen oxides: a first-principles study, Phys. Chem. Chem. Phys. 14 (2012) 3627-3633.
DOI: 10.1039/c2cp23558g
Google Scholar
[12]
T. Liu, I. Temprano, S.J. Jenkins, D.A. King, S.M. Driver, Low temperature synthesis of NH3 from atomic N and H at the surfaces of FeS2{100} crystals, J. Phys. Chem. C 117 (2013) 10990-10998.
DOI: 10.1021/jp308872y
Google Scholar
[13]
R. Schlögl, Catalytic Synthesis of Ammonia—A Never-Ending Story",, Angew. Chem. Int. Ed. 42 (2003) 2004-2008.
DOI: 10.1002/anie.200301553
Google Scholar
[14]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[15]
P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[16]
J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar
[17]
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[18]
W. Paszkowicz, J.A. Leiro, Rietveld refinement study of pyrite crystals, J. Alloy. Compd. 401 (2005) 289-295.
DOI: 10.1016/j.jallcom.2005.02.052
Google Scholar