Preparation of Ni/ZrO2/SiO2 Catalyst and its Application in Hydrogenation of CO2 to Methane

Article Preview

Abstract:

The hydrogenation of CO2 to CH4 can realize the utilization of CO2, which has an important implications to both the energy and environment. As a result of the low catalytic activity of the supported Ni/SiO2 catalyst, the ZrO2 is added to improve its catalytic performance by the impregnation method. The experimental results show that ZrO2 is an effective promoter to enhance the low-temperature catalytic activity of Ni/SiO2 catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1001)

Pages:

79-83

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Asherman, G. Cabot, C. Crua, et al. Designing and Demonstrating a Master Student Project To Explore Carbon Dioxide Capture Technology. J. Chem. Educ. 93(2015) 633-638.

DOI: 10.1021/acs.jchemed.5b00073

Google Scholar

[2] R.W. Dorner, D.R. Hardy, F.W. Williams, et al. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. ENERG. ENVIRON. SCI. 3(2010) 884-890.

DOI: 10.1039/c001514h

Google Scholar

[3] G. Centi, E.A. Quadrelli, S. Perathoner. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. ENERG. ENVIRON. SCI. 6(2013) 1711-1731.

DOI: 10.1039/c3ee00056g

Google Scholar

[4] Y. Amao. Photoredox systems with biocatalysts for CO2 utilization. Sustain. Energ. Fuels, 2 (2018) 1928-1950.

Google Scholar

[5] F.D. Meylan, V. Moreau, S. Erkman. CO2 utilization in the perspective of industrial ecology: an overview. J. CO2 Utili. 12(2015) 101-108.

DOI: 10.1016/j.jcou.2015.05.003

Google Scholar

[6] K. Müller, M. Fleige, F. Rachow, et al. Sabatier based CO2-methanation of Flue Gas Emitted by Conventional Power Plants. Energ. Proce. 40(2013) 240-248.

DOI: 10.1016/j.egypro.2013.08.028

Google Scholar

[7] M.A.A. Aziz, A.A. Jalil, S. Triwahyono, et al. CO2 Methanation over Heterogeneous Catalysts: Recent Progress and Future Prospects. Cheminform. 46(2015) 2647-2663.

DOI: 10.1039/c5gc00119f

Google Scholar

[8] H.Y. Kim, H.M. Lee, J.N. Park. Bifunctional Mechanism of CO2 Methanation on Pd-MgO/SiO2 Catalyst: Independent Roles of MgO and Pd on CO2 Methanation. J. Phys. Chem. C. 114(2010) 7128-7131.

DOI: 10.1021/jp100938v

Google Scholar

[9] H.L. Lu, X.Z. Yang, G.J. Gao, et al. Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation. Int. J. Hydrogen. Energ. 39(33):18894-18907.

DOI: 10.1016/j.ijhydene.2014.09.076

Google Scholar

[10] W.L. Zhen, B. Li, G.X. Lu, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Comm. 51(2015) 1728-1731.

DOI: 10.1039/c4cc08733j

Google Scholar

[11] S.J.M. Rosid, W.A.W.A. Bakar, R. Ali. Catalytic CO2/H2 Methanation Reaction over Alumina Supported Manganese/Cerium Oxide Based Catalysts. Adv. Mater. Res. 1107(2015) 67-72.

DOI: 10.4028/www.scientific.net/amr.1107.67

Google Scholar

[12] G. Zhou, H. Liu, K. Cui, et al. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Appl. Surf. Sci. 383(2016) 248-252.

DOI: 10.1016/j.apsusc.2016.04.180

Google Scholar

[13] M.C. Bacariza, G. Inês, J.M. Lopes, et al. Ni-Ce/Zeolites for CO2 Hydrogenation to CH4: Effect of the Metal Incorporation Order. ChemCatChem, 10(2018) 2773-2781.

DOI: 10.1002/cctc.201800204

Google Scholar

[14] M.C. Bacariza, G. Inês, B.S. Suse, et al. Magnesium as promoter of the CO2 methanation on Ni-based USY zeolites. Energ. Fuel. 31(2017):9776-9789.

DOI: 10.1021/acs.energyfuels.7b01553

Google Scholar