[1]
V.V. Tiutiunyk, H.V. Ivanets, I.A. Tolkunov, E.I. Stetsyuk, System approach for readiness assessment units of civil defense to actions at emergency situations, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1 (2018) 99–105.
DOI: 10.29202/nvngu/2018-1/7
Google Scholar
[2]
Y. Otrosh, A. Kovalov, O. Semkiv, I. Rudeshko, V. Diven, Methodology remaining lifetime determination of the building structures, MATEC Web of Conferences. 230 (2018) 02023.
DOI: 10.1051/matecconf/201823002023
Google Scholar
[3]
V.A. Andronov, Yu.M. Danchenko, A.V. Skripinets, O.M. Bukhman, Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration Terms and conditions Privacy policy, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 6 (2014) 85-91.
DOI: 10.29202/nvngu
Google Scholar
[4]
Y Otrosh, O Semkiv, E Rybka and A Kovalov, About need of calculations for the steelframework building in temperature influences conditions, Materials Science and Engineering. 708 (2019) 012065.
DOI: 10.1088/1757-899x/708/1/012065
Google Scholar
[5]
A. Vasilchenko, E. Doronin, B. Ivanov, V. Konoval, Effect of residual deformation of a steel column on its fire resistance under combined exposure explosion-fire,, Materials Science Forum. 968 (2019) 288–293.
DOI: 10.4028/www.scientific.net/msf.968.288
Google Scholar
[6]
Stephen Kolo, Adeleke Oluwafemi, Yusuf Ibrahim, E.N Olise, Aminulai Hammed, A Abdullahi, Assessment of Compressive Strength of Concrete Bridge using Destructive/Non-Destructive Tests at Elevated Temperature, Epistemics in Science, Engineering and Technology. 6 (2016) 418–422.
Google Scholar
[7]
Enkatesh Preethi, Alapati Mallika. Condition Assessment of Existing Concrete Building Using Non-Destructive Testing Methods for Effective Repair and Restoration-A Case Study, Civil Engineering Journal. 3 (2017) 841.
DOI: 10.28991/cej-030919
Google Scholar
[8]
U. Dilek, Condition assessment of concrete structures, Failure, Distress and Repair of Concrete Structures. (2009) 84–137.
DOI: 10.1533/9781845697037.1.84
Google Scholar
[9]
Janowski Artur, Nagrodzka-Godycka Krystyna, Szulwic Jakub, Ziółkowski Patryk, Remote sensing and photogrammetry techniques in diagnostics of concrete structures, Computers and Concrete. 18 (2016) 405–420.
DOI: 10.12989/cac.2016.18.3.405
Google Scholar
[10]
M. Reis, U. Dilek, Non-Destructive Evaluation and Laboratory Testing of a Concrete Structure Damaged by Fire, Forensic Engineering 2012: Gateway to a Better Tomorrow - Proceedings of the 6th Congress on Forensic Engineering. (2012) 1159–1166.
DOI: 10.1061/9780784412640.123
Google Scholar
[11]
Rukovodstvo po jekspluatacii stroitel'nyh konstrukcij proizvodstvennyh zdanij promyshlennyh predprijatij, Moskva, 1995. 99 s.
Google Scholar
[12]
A. Kovalov, Y. Otrosh, M. Surianinov, T. Kovalevska, Experimental and computer researches of ferroconcrete floor slabs at high-temperature influences, in Materials Science Forum. 968 (2019) 361–367.
DOI: 10.4028/www.scientific.net/msf.968.361
Google Scholar
[13]
V. Andronov, B. Pospelov, E. Rybka, Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects, EasternEuropean Journal of Enterprise Technologies. 4 (5–82) (2016) 38–44.
DOI: 10.15587/1729-4061.2016.75063
Google Scholar
[14]
V. Andronov, B. Pospelov, E. Rybka, S. Skliarov, Examining the learning fire detectors under real conditions of application, Eastern European Journal of Enterprise Technologies, 3 (9–87) (2017) 53–59.
DOI: 10.15587/1729-4061.2017.101985
Google Scholar