Use of Palladium-Modified Polyaniline Electrode as a Sensitive Element of Fire Sensor

Article Preview

Abstract:

Results of the development of a method for immobilizing nanosized palladium into an electrochemically synthesized polyaniline (PAn) electrically conductive porous matrix to create a sensitive element of an ignition sensor are presented. Two methods of manufacturing a sensitive element in the form of an electrode are investigated. The first method consists in the co-precipitation of polyaniline and palladium on a graphitized butyl rubber substrate in a mode of cycling of potential. It was shown that this method can be used to obtain a volume-porous electrode in which palladium nanoparticles are embedded in a polyaniline matrix. The second method involves the deposition of palladium on a polyaniline film formed on graphitized butyl rubber. It was shown that micron-sized island palladium conglomerates on the surface of a polyaniline film can be obtained by this method. The conclusions made are confirmed by physical research methods and the results of scanning electron microscopy. Investigations of the electrocatalytic properties of the electrode in the sensor model showed that with a change in the H2 concentration formed upon ignition, occurs change in the hydrogen concentration on the surface of metal-catalyst (Pd) and a linear change in the current of electrochemical reaction. Comparison of a composite volume-porous polyaniline electrode with embedded palladium showed its superior efficiency compared to a compact palladium electrode and an electrode in which palladium is deposited on the surface of a polyaniline film. The possibility of using an electrochemical detector based on polyaniline with immobilized palladium nanoparticles for a gas amperometric sensor of low hydrogen concentrations and a fire hazard detector is shown.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1006)

Pages:

245-252

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.I. Antonenko, A.A. Vasil'ev, I.M. Olihov, Rannee obnaruzhenie pozhara. Poluprovodnikovye gazovye sensory. [in Russian]. daily.sec.ru/dailypblshow.cfm?rid=6&pid=5603.

Google Scholar

[2] A.L. Gusev, I. V. Zolotuhin, YU. E. Kalinin, A. V. Sitnikov, Datchiki vodoroda i vodorodsoderzhashchih molekul, Vodorodnaya energetika. 5 (2005) 23-31 [in Russian].

Google Scholar

[3] C. Sandaruwan, H.M.P.C.K. Herath, T.S.E.F. Karunarathne et al., Polyaniline/palladium nanohybrids for moisture and hydrogen detection, Chemistry Central Journal. 12 (2018) 93.

DOI: 10.1186/s13065-018-0461-y

Google Scholar

[4] H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors. 7 (2007) 267-307.

DOI: 10.3390/s7030267

Google Scholar

[5] Yuan Gao, Chien-An Chen, Han-Mou Gau, James A. Bailey, Elshan Akhadov, Darrick Williams, Hsing-Lin Wang, Facile Synthesis of Polyaniline-Supported Pd Nanoparticles and Their Catalytic Properties toward Selective Hydrogenation of Alkynes and Cinnamaldehyde, Chem. Mater. 20(8) (2008) 2839-2844. ACS Publications.

DOI: 10.1021/cm7030416

Google Scholar

[6] N.J. Pinto, Electrospun conducting polymer nanofibers as the active material in sensors and diodes. J. Phys. Conf. Ser. 421 (2013) 1–6.

DOI: 10.1088/1742-6596/421/1/012004

Google Scholar

[7] A. MacAgnano, E. Zampetti, S. Pantalei et al., Nanofibrous PANI-based conductive polymers for trace gas analysis, Thin Solid Films. 520 (2011) 978–85.

DOI: 10.1016/j.tsf.2011.04.175

Google Scholar

[8] B.І. Bajrachnij, L.V. Lyashok, І.O. Afonіna, T.V. Orєhova, V.O. CHeranovs'kij, Іmmobіlіzacіya nanochastok Pd v polіmernu matricyu, Vіsnik NTU HPI,. 30 (2010) 57-61 [in Ukrainian].

Google Scholar

[9] M. Kent, Kost. Duane, E. Bartak, Beth. Kazee, Theodore Kuwana, Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications, Anal. Chem.  60 (21) (1988) 2379-2384. ACS Publications.

DOI: 10.1021/ac00172a012

Google Scholar

[10] A.J. Burris, K. Tran, Q. Cheng, Tunable Enhancement of a Graphene/Polyaniline/Poly(ethylene oxide) Composite Electrospun Nanofiber Gas Sensor, J. Anal. Test. 1 (2017) 12.

DOI: 10.1007/s41664-017-0012-x

Google Scholar

[11] B.I. Podlovchenko, V.N. Andreev, Elektrokataliz na modificirovannyh polimerami elektrodah, Uspekhi himii. 71(10) (2002) 950–965 [in Russian].

Google Scholar

[12] V.N. Andreev, M.A. Spicyn, V.E. Kazarinov, Adsorbcionnye i elektrokataliticheskie svojstva steklouglerodnyh elektrodov, modificirovannyh plenkami polianilina i chasticami osazhdennoj platiny, Elektrohimiya. 32(12) (1996) 1417−1423 [in Russian].

Google Scholar

[13] B.I. Bairachnyi, A.V. Vasil'chenko, L.V. Lyashok, T.V. Orekhova, T.F. Baikova,.Synthesis of polyaniline films on graphitized butyl rubber, Russian journal of applied chemistry; 72 (5) (1999) 883-885.

Google Scholar

[14] B.I. Bairachnyi, A.V. Vasil'chenko, L.V. Lyashok, T.V. Orekhova, T.F. Baikova,.Polyaniline Cathode in Secondary Storage Batteries, Russian journal of applied chemistry. 72 (2) (1999) 225-228.

Google Scholar

[15] L. Li, G. Yan, J. Wu et al., Preparation of polyaniline–palladium composite microflakes by one-step interface polymerization method, J Polym Res. 16 (2009) 421–426.

DOI: 10.1007/s10965-008-9244-9

Google Scholar

[16] Gertrude Fomo, Tesfaye T. Waryo, Priscilla Baker, Emmanuel I. Iwuoha, Electrochemical Deposition and Properties of Polyaniline Films on Carbon and Precious Metal Surfaces in Perchloric Acid/ Acetonitrile, Int. J. Electrochem. Sci. 11 (2016) 10347–10361.

DOI: 10.20964/2016.12.102

Google Scholar

[17] V.N. Andreev, V.I. Zolotarevskii, Structure and properties of the Nafion–polyaniline–palladium composite electrodes, Russ J Electrochem. 41 (2005) 189–194.

DOI: 10.1007/s11175-005-0031-1

Google Scholar

[18] WadiaDhaoui, MagdalenaHasik, DavidDjurado, AndrzejBernasik, AdamPron, Redox behaviour of polyaniline–palladium catalytic system in the presence of formic acid, Synthetic Metals. 160(23–24) (2010) 2546-2551.

DOI: 10.1016/j.synthmet.2010.10.003

Google Scholar

[19] X. Tang, P. Haddad, N. Mager et al. Chemically deposited palladium nanoparticles on graphene for hydrogen sensor applications, Sci. Rep. 9 (2019) 3653.

DOI: 10.1038/s41598-019-40257-7

Google Scholar