Assessment of Electrochemical Compatibility of Structural Materials of some Dental Products

Article Preview

Abstract:

Orthopedic treatment of tooth anomalies in children and adolescents is provided the long-term use of various metal constructions and devices in the oral cavity – braces, retreaders, locks or rings with struts, wire arches, and so on. They are usually made of corrosion-resistant metals and alloys, most often they are made of stainless chromium-nickel austenitic steels of Х18Н9Т type (import analogue – steel 304), martensitic 08Х17 (import analogue – steel 430), nickel-titanium or nickel-molybdenum alloys. The main disadvantage of all metal products is their manifestation of electrochemical properties and participation in electrochemical processes which can flow into the oral cavity and provoke galvanoses, especially for their joint use. In the "in vitro" conditions, according to a specially developed method, investigations of electrode potentials of directly 4 types of very small (2–3 mm) orthodontic products, in recommended for such products environment were carried out: 3 % solution of sodium chloride (pH=6,8), 2 % solution of citric acid (pH=0.5) and 2 % solution of baking soda (pH=8.65). It is found that the considered elements of orthodynamic systems have similar values of electrode potentials in neutral and weakly-alkaline environments and, accordingly, in the absence of other metal inclusions in the oral cavity, can be used jointly without the risk of galvanosis. The most heterogeneous construction is an individual ring with a strut, in which the difference in the values of the potentials between the individual parts in the acidic medium is more than 120 mV, which is a prerequisite for increasing the likelihood of galvanosis. For simultaneous use of other elements, in particular standard doping brackets, the value of EMF can increase up to 160 mV.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1006)

Pages:

253-258

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Seema Pattanaik, Vikas Bvj, Bikash Pattanaik, Shailendra Sahu, Denture stomatitis: a literature review, Journal of Indian Academy of Oral Medicine and Radiology. 22(3) (2010) 136-140.

DOI: 10.5005/jp-journals-10011-1032

Google Scholar

[2] Avadhesh Kumar Chaubey, Sunil Kumar Mishra, Ramesh Chowdhary, Positive material identification testing of dental implant to correlate their compositions with allergic conditions, Journal of Oral Biology and Craniofacial Research. 9(3) (2019) 294.

DOI: 10.1016/j.jobcr.2019.05.003

Google Scholar

[3] N.V. Yaschikovskiy, L.S. Velichko, A.I. Kulak, Vliyanie tehnologicheskih faktorov na korrozionno-elektrohimicheskie protsessyi, prohodyaschie na poverhnosti stomatologicheskih splavov 1H18N9T, Sovremennaya stomatologiya, Minsk. 2 (2007) 67–70 [in Russian].

Google Scholar

[4] M.G. Schogoleva, Elektrohimicheskie protsessyi v polosti rta patsientov, Medichni nauki. Scientific journal Science Rise,. 12/3(17) (2015) 72–76 [in Russian].

Google Scholar

[5] L.R.L. Aboud, F. Ormiga, J.A.C. P. Gomes, Electrochemical induced dissolution of fragments of nickel-titanium endodontic files and their removal from simulated root canals International Endodontic Journal. (2013) n/a.

DOI: 10.1111/iej.12126

Google Scholar

[6] Mohd Talha, Yucong Ma, Yuanhua Lin, Yong Pan, Xiangwei Kong, O.P. Sinha and C.K. Behera, Corrosion performance of cold deformed austenitic stainless steels for biomedical applications, Corrosion Reviews.  37(4) (2019) 283-306.

DOI: 10.1515/corrrev-2019-0004

Google Scholar

[7] J. Mystkowska, K. Niemirowicz-Laskowska, D. Łysik, G. Tokajuk, J.R. Dąbrowski, R. Bucki, The role of oral cavity biofilm on metallic biomaterial surface destruction–corrosion and friction aspects, Int. J. Mol. Sci. 19 (2018) 743.

DOI: 10.3390/ijms19030743

Google Scholar

[8] G. Bayramoğlu, T. Alemdaroğlu, S. Kedici, A.A. Aksüt, The effect of pH on the corrosion of dental metal alloys, J Oral Rehabil. 27(7) (2000) 563-75.

Google Scholar

[9] L.S. Velichko, N.V. Yaschikovskiy, Zabolevaniya, obuslovlennyie materialami zubnyih protezov, Meditsinskiy zhurnal. 2 (2010) 38-44 [in Russian].

Google Scholar

[10] G. Lei, X. Hong, Corrosion of dental metal and alloy materials in oral application, Journal of Clinical Rehabilitative Tissue Engineering Research. 14(21) (2010) 3961-3964.

Google Scholar

[11] A.V. Yumashev, A.S. Utyuzh, M.V. Mikhailova, V.O. Samusenkov, I.R. Volchkova, Selecting clinical and laboratory methods of manufacture of orthopaedic titanium alloy structures using a biopotentiometer, Current science. 114(4) (2018) 891-896.

DOI: 10.18520/cs/v114/i04/891-896

Google Scholar

[12] Ivica Richter, Ivan Alajbeg, Vanja Vučićević Boras, Ana Andabak Rogulj, Vlaho Brailo, Mapping electrical impedance spectra of the healthy oral mucosa: a pilot study, Acta Stomatol Croat. 49(4) (2015) 331-339.

DOI: 10.15644/asc49/4/9

Google Scholar

[13] Andréa Pereira Morais, Alexandre Visintainer Pino, Marcio Nogueira Souza, Assessment of Tooth Structure using an Alternative Electrical Bioimpedance Spectroscopy Method, Braz. Dent. J. 25(2) (2014).

DOI: 10.1590/0103-6440201302316

Google Scholar

[14] N.D. Omelyanenko, D.K. Guscha, Izmerenie soprotivleniy tkaney polosti rta: osobennosti, posledovatelnost, nezamechennyie oshibki. Sovremennaya stomatologiya. 4 (2009) 22 [in Russian].

Google Scholar

[15] V.F. Kutsevlyak, O.K. Sevidova, M.G. Schogoleva, O.V. Vasilchenko, Sposib diagnostiki galvanoziv. Deklaratsiyniy patent na vinahid. 55906, A, Ukrayina, MPK 7 A61V10/00, A61S5/08 [in Ukrainian].

Google Scholar

[16] A.V. Zhidovinov, Obosnovanie primeneniya kliniko-laboratornyih metodov diagnostiki i profilaktiki galvanoza polosti rta u patsientov s metallicheskimi zubnyimi protezami.: Avtoreferat dissertatsii k. med. n., Volgograd, 2013 [in Russian].

Google Scholar

[17] A.A. Timofeev, Pokazateli potentsiometrii i nespetsificheskoy rezistentnosti organizma u patsientov s metallicheskimi vklyucheniyami v polosti rta, fiksirovannyimi na dentalnih implantatah i zubah, Sovremennaya stomatologiya. 4 (2005) 133-138 [in Russian].

Google Scholar

[18] F.V. Mihalchenko, A.V. Zhidovinov, L.I. Denisenko, Korroziya metallov polosti rta kak faktor razvitiya galvanoza, Sovremennyie problemyi nauki i obrazovaniya. 3 (2015) [in Russian].

Google Scholar