Research of Fireproof Capability of Coating for Metal Constructions Using Calculation-Experimental Method

Article Preview

Abstract:

Determination of characteristic of fireproof capability of examined fire-retardant coating by experiment-calculated method solving the inverse heat conduction problems based on the firing tests data. With the aim of determining the fire-resistance time of metal sheets with fire-retardant coating there are used experimental research methods of patterns behavior during heating according to the requirements of National Standards of Ukraine B.V. 1.1.-4-98 are used; mathematical and computer modelling of processes of unsteady heat transfer in the system “metal sheet – fire-retardant coating”; determination of thermal characteristics and characteristic of coating fireproof capability. Firing tests of metal sheets covered by the flame retardant “Amotherm Steel Wb” are carried out. Based on the obtained data (temperature from the unheated sheet surface) there are determined the thermal characteristics of formed coating depending on temperature and the characteristic of fireproof capability of examined coating for 30 minutes fire-resistance time. The effectiveness of intumescent coating “Amotherm Steel Wb” is proved and the dependence between its heat conduction coefficient and temperature during heating in experimental stove of metal sheet with this coating in standard temperature conditions is specified. The co-relation between the thickness of intumescent coating “Amotherm Steel Wb” and fire-retarding quality of metal constructions is identified. Besides the necessary minimum thicknesses of such coating from the thickness of metal sheet for importance of 30 minutes fire-resistance time are calculated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1006)

Pages:

3-10

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.P. Borys, A.P. Polovko, T.B. Yuzkiv, Ekspres-metodyka otsiniuvannia vohnezakhysnoi zdatnosti vohnezakhysnykh materialiv, Naukovyi visnyk UkrNDIPB. 26 (2012) 95–99.

Google Scholar

[2] S.V. Bazhenov, Yu.V. Naumov, Vliyanie neodnorodnosti tolshchiny vspuchivayushchegosya pokrytiya dlya metallicheskikh konstruktsiy na ognezashchitnuyu effektivnost s uchetom deformatsii koksovogo sloya pri teplovom vozdeystvii (usloviya pozhara), Pozharnaya bezopasnost. 6 (2004) 57–62.

DOI: 10.17223/9785946217408/148

Google Scholar

[3] I.V. Abramov, M.V. Gravit, E.I. Gumerova, Povyshenie predelov ognestoykosti sudovykh i stroitelnykh konstruktsiy pri uglevodorodnom temperaturnom rezhime, Gazovaya promyshlennost. 5 (2018) 108–117.

Google Scholar

[4] J.K. Paik, J. Czujko, Assessment of hydrocarbon explosion and fire risks in offshore installations: Recent advances and future trends, IES Journal Part A: Civil and Structural Engineering. 4 (2016) 167–179.

DOI: 10.1080/19373260.2011.593345

Google Scholar

[5] A. Vasilchenko, E. Doronin, B. Ivanov, V. Konoval, Effect of Residual Deformation of a Steel Column on its Fire Resistance under Combined Exposure Explosion-Fire,, In Materials Science Forum. 968 (2019) 288-293.

DOI: 10.4028/www.scientific.net/msf.968.288

Google Scholar

[6] A. Kovalov, Y. Otrosh, T. Kovalevska and S. Safronov, Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings, IOP Conf. Series: Materials Science and Engineering. 708 (2019) 012058.

DOI: 10.1088/1757-899x/708/1/012058

Google Scholar

[7] A. Kovalov, Y. Otrosh, S. Vedula, О. Danilin, Т. Kovalevska, Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 3 (2019) 46–53.

DOI: 10.29202/nvngu/2019-3/9

Google Scholar

[8] A.I. Kovalov, Ye.V. Kachkar, N.V. Zobenko [ta in.], Eksperymentalne doslidzhennia vohnezakhysnoi zdatnosti pokryttia «Amotherm Steel Wb» pry temperaturnomu rezhymovi vuhlevodnevoi pozhezhi, Pozhezhna bezpeka: teoriia i praktyka. 17 (2014) 53–60.

Google Scholar

[9] F. Wald, L. Simões Da Silva, D.B. Moore, T. Lennon, M. Chladna, A. Santiago, M. Beneš, L. Borges, Experimental behaviour of a steel structure under natural fire, Fire Safety Journal. 7 (2006) 509–522.

DOI: 10.1016/j.firesaf.2006.05.006

Google Scholar

[10] A. Kovalov, V. Konoval, A. Khmyrova, K. Dudko, Parameters for simulation of the thermal state and fire-resistant quality of hollow-core floors used in the mining industry, E3S Web of Conferences. 123 (2019) 01022.

DOI: 10.1051/e3sconf/201912301022

Google Scholar

[11] Rehlament robit z vohnezakhystu dlia vohnezakhysnoi rechovyny «Amotherm Steel Wb», shcho spuchuietsia, dlia stalevykh konstruktsii / DITB Ukrainy, 2012. – № 95/1/36946711. – 29 p.

Google Scholar

[12] DSTU B V.1.1–4–98* Zakhyst vid pozhezhi. Budivelni konstruktsii. Metody vyprobuvan na vohnestiikist. Zahalni vymohy. Kyiv, 2005 [in Ukrainian].

Google Scholar