[1]
M. O. Speidel, Stress cracking of aluminium alloys, Metallurgical Transac. A, 6 (1975) 631-651.
Google Scholar
[2]
X. G. Zhong, et al. Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment, Corros. Sci. 115 (2017) 106-117.
DOI: 10.1016/j.corsci.2016.11.019
Google Scholar
[3]
F. Delaunois, et al. Monitoring of chloride stress corrosion cracking of austenitic stainless steel: identification of the phases of the corrosion process and use of a modified accelerated test, Corros. Sci. 110 (2016) 273-283.
DOI: 10.1016/j.corsci.2016.04.038
Google Scholar
[4]
C. Jirarungsatian, A. Prateepasen, Pitting and uniform corrosion source recognition using acoustic emission parameters, Corros. Sci. 52 (2010) 187-197.
DOI: 10.1016/j.corsci.2009.09.001
Google Scholar
[5]
Y. F. Wang, G. X. Cheng, Y. Li, Observationof the pitting corrosion and uniform corrosion for X80 steel in 3.5wt.%NaCl solutions using in-situ and 3-D measuring microscope, Corros. Sci. 111 (2016) 508-517.
DOI: 10.1016/j.corsci.2016.05.037
Google Scholar
[6]
Yuxi Zhao, Ali R. Karimi, et al. Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer, Corros. Sci. 53 (2011) 2803-2814.
DOI: 10.1016/j.corsci.2011.05.017
Google Scholar
[7]
Y. J. Kim, S. W. Kim, H. B. Kim, C. N. Park, Y. I. Choi, C. J. Park, Effects of the precipitation of secondary phases on the erosion-corrosion of 25% Cr duplex stainless steel, Corros. Sci. 152 (2019) 202-210.
DOI: 10.1016/j.corsci.2019.03.006
Google Scholar
[8]
T-T. Nguyen, J. Bolivar, Y. Shi, J. Rethore, A. King, M. Fregonese, J. Adrien, J-Y. Buffiere, M-C. Baietto, A Phase field method for modelling anodic dissolution induced stress corrosion crack propagation, Corros. Sci. 132 (2018) 146-160.
DOI: 10.1016/j.corsci.2017.12.027
Google Scholar
[9]
Xiaohua Yang, Ping Jin, Compile of aircraft operation environment spectrum, Equipment Environmental Engineering, 76 (2010) 99-102.
Google Scholar
[10]
S. Zhang, T. Zhang, et al. Equivalent relationship model of exfoliation corrosion damage for aluminium alloy in EXCO solution and coastal atmospheric environment, Corros. Protect. 37(4) (2016) 294-299.
Google Scholar
[11]
Taifeng Zhang, Zhiyue Gu, et al. Reliability model of accelerated corrosion relationship based on corrosion current, Equipment Environmental Engineering,16(2019)53-57.
Google Scholar
[12]
Duofeng Li, Zhiyong Huang, et al. Simulation study on LD10 aluminium alloy accelerated corrosion test, Guangzhou Chemical Industry 40(2012)92-94.
Google Scholar
[13]
A. Valor, F. Caleyo, et al. Reliability assessment of buried pipelines based on different corrosion rate models, Corros. Sci. 66 (2013) 78-87.
DOI: 10.1016/j.corsci.2012.09.005
Google Scholar
[14]
R. E. Melchers, The effect of corrosion on the structural reliability of steel offshore structures, Corros. Sci. 47(10) (2005) 2319-2410.
DOI: 10.1016/j.corsci.2005.04.004
Google Scholar
[15]
F. A. V. Bazan, A. T. Beck, Stochastic process corrosion growth models for pipeline reliability, Corros. Sci. 74 (2013) 50-58.
Google Scholar