Synthesis of Magnetically Separable Activated Carbon from Pineapple Crown Leaf for Zinc Ion Removal

Article Preview

Abstract:

Metals removal from wastewater has become a major concern over the years due to the adverse effects of metals on organisms and environment. Adsorption is one of the safest, simplest, and most cost-effective methods for metals removal. The primary purpose of this study was to develop a magnetically separable activated carbon from pineapple crown leaf for zinc removal. Magnetic activated carbon (MAC) were characterized by SEM-EDX and FTIR. The ability of MAC to adsorb zinc ion was studied through variation of initial solution pH, concentration, and contact time. The optimum pH for zinc removal was four, while the equilibrium was reached after 180 min. In this condition, the percentage removal of zinc was 70.5%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1007)

Pages:

71-75

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. F. Gonzales, M. Calero, Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: Scale-up and preparation of zinc-based biochar, J. Clean. Prod. 227 (2019) 634-644.

DOI: 10.1016/j.jclepro.2019.04.195

Google Scholar

[2] V. D. A. Cardoso, A. G. de Souza, P. P. Sartoratto, L. M. Nunes, The ionic exchange process of cobalt, nickel and copper (II) in alkaline and acid-layered titanates, Colloids Surf. A Physicochem. Eng. Asp. 248(1-3) (2004) 145-149.

DOI: 10.1016/j.colsurfa.2004.09.012

Google Scholar

[3] M. Ye, G. Li, P. Yan, J. Ren, L. Zheng, D. Han, S. Sun, S. Huang, Y. Zhong, Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation, Chemosphere, 185 (2017) 1189-1196.

DOI: 10.1016/j.chemosphere.2017.07.124

Google Scholar

[4] J. E. Efome, D. Rana, T. Matsuura, C. Q. Lan, Effect of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process, Sci. Total Environ. 674 (2019) 355-362.

DOI: 10.1016/j.scitotenv.2019.04.187

Google Scholar

[5] T. K. Tran, K. F. Chiu, C. Y. Lin, H. J. Leu, Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process, Int. J. Hydro. Energy, 42(45) (2017) 27741-27748.

DOI: 10.1016/j.ijhydene.2017.05.156

Google Scholar

[6] M. Sillanpaa, M.C, Ncibi, A. Matilainen, M. Vepsalainen, Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review, Chemosphere, 190 (2018) 54-71.

DOI: 10.1016/j.chemosphere.2017.09.113

Google Scholar

[7] S. Gogoi, S. Chakraborty, M. D Saikia, Surface modified pineapple crown leaf for adsorption of Cr(VI) and Cr(III) ions from aqueous solution, J. Environ. Chem. Eng. 6(2) (2018) 2492-2501.

DOI: 10.1016/j.jece.2018.03.040

Google Scholar

[8] W. Astuti, T. Sulistyaningsih, E. Kusumastuti, G. Y. R. S. Thomas, R. Y. Kusnadi, Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal, Biores. Technol. 287( (2019) 121426.

DOI: 10.1016/j.biortech.2019.121426

Google Scholar

[9] E. Yagmur, Y. Gokce, S. Tekin, N.I. Semerci, Z. Aktas, Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2, Fuel, 267 (2020) 117232.

DOI: 10.1016/j.fuel.2020.117232

Google Scholar

[10] O. Oginni, K. Singh, G. Oporto, B. D. Andoh, L. McDonald, E. Sabolsky, Effect of one-step and two step H3PO4 activation on activated carbon characteristic, Biores. Technol. Rep. 8 (2019) 100307.

DOI: 10.1016/j.biteb.2019.100307

Google Scholar

[11] W. Astuti, R. A. Hermawan, H. Mukti, N. R. Sugiyono, Preparation of activation carbon from mangrove propagule waste by H3PO4 activation for Pb2+ adsorption, AIP. Conf. Proc. 1788(1) (2017) 030082.

DOI: 10.1063/1.4968335

Google Scholar

[12] L. Yue, Q. Xia, L. Wang, L. Wang, H. DaCosta, J. Yang, X. Hu, CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell, J. Colloid Interf. Sci. 511 (2018) 259-267.

DOI: 10.1016/j.jcis.2017.09.040

Google Scholar

[13] K. K. Beltrame, A. L Cazetta, P. S. de Souza, L. Spessato, T. L. Silva, V. C Almeida, Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves, Ecotox. Environ. Safe. 147 (2018) 64-71.

DOI: 10.1016/j.ecoenv.2017.08.034

Google Scholar

[14] S. Y. Gu, C. T. Hsieh, Y. A. Gandomi, Z. F. Yang, L. Li, C. C. Fu, R. S. Juang, Functionalization of activated carbon with magnetic Iron oxide nanoparticles for removal of copper ions from aqueous solution, J. Mol. Liq. 277 (2019) 499-505.

DOI: 10.1016/j.molliq.2018.12.018

Google Scholar

[15] E. Altintig, H. Altundag, M. Tuzen, A. Sari, Effective removal methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent, Chem. Eng. Res. Des. 122 (2017) 151-163.

DOI: 10.1016/j.cherd.2017.03.035

Google Scholar