Pebax 1657 Nanocomposite Membranes Incorporated with Nanoadsorbent Derived from Oil Palm Frond for CO2/CH4 Separation

Article Preview

Abstract:

Membrane technology has attracted significant attention from the researchers, especially in gas separation process due to their simple process design and low capital cost compared to conventional techniques. In this work, oil palm frond (OPF) waste was used as nanoadsorbent embodied in polyether block amide (Pebax 1657) nanocomposite membrane to improve the CO2/CH4 separation. The effectiveness of the nanoadsorbent derived from OPF was evaluated by varying the nanoadsorbent concentration (2–8 wt %) and controlling the Pebax 1657 concentration (5 wt %), dipping time (5 s), and number of sequential coatings (3 layers). The pore characteristics of the nanoadsorbent was analyzed using Brunauer–Emmett–Teller (BET) analysis. The morphology and the existence of active groups in the newly synthesized nanoadsorbent and nanocomposite membranes were investigated using field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The single gas permeation process was carried out at constant pressure (2 bar) and room temperature (25 ± 5 °C). The optimum condition with 5 wt % nanoadsorbent made the nanocomposite membrane exceeded the trade-off limit of the Robeson plot with a CO2 permeability and CO2/CH4 selectivity of 1475.09 Barrer and 40.48, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1007)

Pages:

52-58

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bhattacharya, M. K. Mandal, Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation, J. Clean. Prod. 186 (2018) 241-252.

DOI: 10.1016/j.jclepro.2018.03.099

Google Scholar

[2] N. Waheed, A. Mushtaq, S. Tabassum, M. A. Gilani, A. Ilyas, F. Ashraf, Y. Jamal, M. R. Bilad, A. U. Khan, A. L. Khan, Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation, Sep. Purif. Technol. 170 (2016) 122-129.

DOI: 10.1016/j.seppur.2016.06.035

Google Scholar

[3] M. Mozafari, R. Abedini, A. Rahimpour, Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4, J. Mater. Chem. A, 6(26) (2018) 12380-12392.

DOI: 10.1039/c8ta04806a

Google Scholar

[4] D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, B. D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer 54(18) (2013) 4729-4761.

DOI: 10.1016/j.polymer.2013.05.075

Google Scholar

[5] P. D. Sutrisna, J. Hou, H. Li, Y. Zhang, V. Chen, Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes, J. Membrane Sci. 524 (2017) 266-279.

DOI: 10.1016/j.memsci.2016.11.048

Google Scholar

[6] M. M. Zainol, N. A. S. Amin, M. O. H. D Asmadi, Preparation and Characterization of Impregnated Magnetic Particles on Oil Palm Frond Activated Carbon for Metal Ions Removal, Sains Malaysiana, 46(5) (2017) 773-782.

DOI: 10.17576/jsm-2017-4605-12

Google Scholar

[7] M. Saadia, B. Ahmed, O. Nazha, A. Abdlemjid, C. M'Hamed, Preparation and Characterization of Activated Carbon from Residues of Oregano, J. Surf. Coat. Tech. 28(3-4) (2012) 91-100.

Google Scholar

[8] M. B. Ahmed, M. A. H. Johir, J. L. Zhou, H. H. Ngo, L. D. Nghiem, C. Richardson, M. A. Moni, M. R. Bryant, Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption, J. Clean. Prod. 225 (2019) 405-413.

DOI: 10.1016/j.jclepro.2019.03.342

Google Scholar

[9] S. Baru, Preparation of Activated Carbon Electrode from Pineapple Crown Waste for Supercapacitor Application, Int. J. Electrochem. Sci. 14 (2019) 2462-2475.

DOI: 10.20964/2019.03.17

Google Scholar

[10] A. F. Rugayah, A. A. Astimar, N. Norzita, Preparation and Characterization of Activated Carbon from Palm Kernel Shell by Physical Activation with Steam, J. Oil Palm Res. 26(3) (2014) 251-264.

Google Scholar

[11] C. S. Casari, A. L. Bassi, A. Baserga, L. Ravagnan, P. Piseri, C. Lenardi, M. Tommasini, A. Milani, D. Fazzi, C. E. Bottani, P. Milani, Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon, Phys. Rev B, 77.19 (2008) 195444.

DOI: 10.1103/physrevb.77.195444

Google Scholar

[12] Y. Li, R. Xu, B. Wang, J. Wei, L. Wang, M. Shen, J. Yang, Enhanced N-doped Porous Carbon Derived from KOH-Activated Waste Wool: A Promising Material for Selective Adsorption of CO2/CH4 and CH4/N2, Nanomaterials 9.2 (2019) 266.

DOI: 10.3390/nano9020266

Google Scholar

[13] M. S. A. Wahab, S. A. Rahman, A. L. Ahmad, Biomethane Purification Using PVDF/Pebax 1657 Thin Film Composite Membrane, J. Phys. Sci. 28 (2017) 39-51.

DOI: 10.21315/jps2017.28.s1.3

Google Scholar