Photocatalytic Activity of Bilayer TiO2/ZnO and ZnO TiO2 Thin Films

Article Preview

Abstract:

Thin film is a thin material that is resulting from the condensation of species through the deposition of atoms on the substrate. Thin films are usually used in the production of electronic devices, optical coatings, solar cells, and for decorative items. The bilayer of TiO2/ZnO and ZnO TiO2 thin films have some advantages such as can enhance the surface state and surface atomic mobility, which are useful for improving the photocatalytic activity. The motivation to a used double layer of ZnO and TiO2 is to enhance the properties and photocatalytic activity using the different deposition temperature between the layers. The structural of ZnO/TiO2 thin films were studied using X-Ray diffraction (XRD). Field Emission Scanning Electron Microscope (FESEM) was used to determine the surface morphology of ZnO/TiO2 thin films. The photocatalytic activity of ZnO/TiO2 thin films was analysed using the photodegradation of methylene blue (MB) solution. The XRD analysis revealed that highest anatase crystalline phase for TiO2 growth with orientation (1 0 1), while the ZnO crystal phase, zincite occurred at the highest intensity with (1 0 1) orientation.. The bilayer TiO2/ZnO thin film had the highest reaction rate, K, which is 0.0972 h-1 for photocatalytic activity. The characteristics of bilayer TiO2/ZnO and ZnO/TiO2 thin-film is strongly influenced by the calcination temperature and the presence and combination between the two types of materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

411-417

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shen, S., Kronawitter, C., and Kiriakidis, G. An Overview of Photocatalytic Materials. Journal of Materiomics, 2017, 3(1): 1-2.

Google Scholar

[2] Schneider, J., Bahnemann, D., Ye, J., Puma, G.L., and Dionysiou, D.D. Photocatalysis: Fundamentals and Perspectives. Royal Society of Chemistry. (2016).

Google Scholar

[3] J. Sundaraam, O. N. B., Meena, P., Veeravazhuthi, V., and Selvan, K. T. Thin Film Techniques and Applications. New Delhi: Allied publishers PVT. LTD. (2004).

Google Scholar

[4] Hussin, R., Choy, K. L., and Hou, X. Enhancement of Crystallinity and Optical Properties of Bilayer TiO₂/ZnO Thin Films Prepared By Atomic Layer Deposition. J Nanosci Nanotechnol, 2011, 11(9): 8143-8147.

DOI: 10.1166/jnn.2011.5086

Google Scholar

[5] Fallah, M., Zamani-Meymian, M. R., Rahimi, R., and Rabbani, M. Effect of Annealing Treatment on Electrical and Optical Properties of Nb Doped TiO₂ Thin Films As A TCO Prepared by Sol-Gel Spin Coating Method. Applied Surface Science, 2014, 316: 456-462.

DOI: 10.1016/j.apsusc.2014.08.029

Google Scholar

[6] Pérez-Larios, A., Lopez, R., Hernández-Gordillo, A., Tzompantzi, F., Gómez, R., and Torres-Guerra, L.M. Improved Hydrogen Production from Water Splitting Using TiO₂–ZnO Mixed Oxides Photocatalysts. Fuel, 2012, 100: 139-143.

DOI: 10.1016/j.fuel.2012.02.026

Google Scholar

[7] Mathews, N. R., Morales, E. R., Cortés-Jacome, M. A., and Toledo Antonio, J. A. TiO₂ Thin Films – Influence of Annealing Temperature on Structural, Optical and Photocatalytic Properties. Solar Energy, 2009, 83(9): 1499-1508.

DOI: 10.1016/j.solener.2009.04.008

Google Scholar

[8] Xu, L.M., Yang, M., Li, X.Y., Hu, P., and Li, S.W. Effect of Growth Temperature on Ferromagnetism in Mn: TiO₂ Thin Film Grown on SrTiO₃: Nb Substrate. Scripta Materialia, 2010, 63(1): 113-116.

DOI: 10.1016/j.scriptamat.2010.03.027

Google Scholar

[9] Schoeppner, R. L. D., Bahr, F., Jin, H., Goeke, R. S., Moody, N. R., and Prasad, S. V. Wear Behavior of Au–ZnO Nanocomposite Films for Electrical Contacts. Journal of Materials Science, 2014, 49(17): 6039–6047.

DOI: 10.1007/s10853-014-8326-9

Google Scholar

[10] Shei, S. C., Lee, P. Y., and Chang, S. J. Effect of Temperature on The Deposition of ZnO Thin Films by Successive Ionic Layer Adsorption and Reaction. Applied Surface Science, 2012, 258(20): 8109-8116.

DOI: 10.1016/j.apsusc.2012.05.004

Google Scholar

[11] Malek, M.F., Mamat, M.H., Khusaimi, Z., Sahdan, M.Z., Musa, M.Z., Zainun, A.R., Suriani, A.B., Md Sin, N.D., Abd Hamid, S.B., and Rusop, M. Sonicated Sol-Gel Preparation of Nanoparticulate ZnO Thin Films with Various Deposition Speeds: The Highly Preferred C-Axis (0 0 2) Orientation Enhances The Final Properties. Journal of Alloys and Compounds, 2014, 582: 12-21.

DOI: 10.1016/j.jallcom.2013.07.202

Google Scholar

[12] Chopra, K. L. and Das, S. R. Thin Film Solar Cell. New York: Plenum Press. (1983).

Google Scholar

[13] Chen, Y., Zhang, C., Huang, W., Yang, C., Huang, T., Situ, Y., and Huang, H. Synthesis of Porous ZnO/TiO₂ Thin Films with Superhydrophilicity and Photocatalytic Activity via a Template-Free Sol-Gel Method. Surface and Coatings Technology, 2014, 258: 531-538.

DOI: 10.1016/j.surfcoat.2014.08.042

Google Scholar

[14] Naseri, N., Yousefi, M., and Moshfegh, A. Z. A Comparative Study on Photoelectrochemical Activity of ZnO/TiO₂ And TiO₂/ZnO Nanolayer Systems Under Visible Irradiation. Solar Energy, 2011, 85(9): 1972-1978.

DOI: 10.1016/j.solener.2011.05.002

Google Scholar

[15] Bel Hadjltaief, H., Ben Zina, M., Galvez, M.E., and Da Costa, P. Photocatalytic Degradation of Methyl Green Dye in Aqueous Solution Over Natural Clay-Supported ZnO–TiO₂ Catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315: 25-33.

DOI: 10.1016/j.jphotochem.2015.09.008

Google Scholar

[16] Bai, L., Kou, G., Gong, Z., and Zhao, Z. Effect of Zn and Ti Mole Ratio on Microstructure and Photocatalytic Properties of Magnetron Sputtered TiO₂–ZnO Heterogeneous Composite Film. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3643-3649.

DOI: 10.1016/s1003-6326(13)62912-x

Google Scholar