Electrochemical Corrosion Behavior of Iron Aluminides in Sulfuric Acid

Article Preview

Abstract:

In the present work, samples of a binary intermetallic alloy (Fe3Al) with 26at.%Al were submitted to electrochemical corrosion evaluation in a 0.5M H2SO4 solution containing naturally dissolved oxygen. The corrosion resistance was evaluated by applying linear polarization, electrochemical impedance spectroscopy and potentiodynamic polarization at 22 and 35°C. The results obtained revealed that in both conditions the material exhibits active-passive behavior. Heating to 35°C did not alter the passivity characteristics of the alloy (passivation range and passive current density), but elevated the corrosion current density and the critical current density. The polarization resistance of the samples was also decreased with temperature, following the trend observed for the corrosion current density.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

395-400

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.B. Pöter, F. Stein, R. Wirth, M. Spiegel, Early Stages of Protective Oxide Layer Growth on Binary Iron Aluminides Vol. 219 (2005), p.1489.

DOI: 10.1524/zpch.2005.219.11.1489

Google Scholar

[2] H. Asteman, M. Spiegel: Corros. Sci. Vol. 50 (2008), p.1734.

Google Scholar

[3] P. Brito, H. Pinto, C. Genzel, M. Klaus, A. Kaysser-Pyzalla: Scr. Mater. Vol. 65 (2011).

Google Scholar

[4] P. Brito, H. Pinto, C. Genzel, M. Klaus, A. Kaysser-Pyzalla: Acta Mater. Vol. 60 (2012).

Google Scholar

[5] P. Brito, H. Pinto, A. Kostka: Corros. Sci. Vol. 105 (2016).

Google Scholar

[6] V.S. Rao: Vol. Vol. 49 (2004) 4533–4542.

Google Scholar

[7] V.S. Rao: Corros. Sci. Vol. 47 (2005), p.183.

Google Scholar

[8] K. Kowalski, B. Łosiewicz, A. Budniok, M. Kupka: Mater. Chem. Phys. Vol. 126 (2011), p.314.

Google Scholar

[9] D.F.L. Borges, D.C.R. Espinosa, C.G. Schön: J. Mater. Res. Technol. Vol. 3 (2014), p.101.

Google Scholar

[10] R. Prescott, M.J. Graham: The Oxidation of Iron-Aluminum Alloys Vol. 38 (1992), p.73.

Google Scholar

[11] M. Palm: Intermetallics (2005), p.1286.

Google Scholar

[12] D.G. Morris, M.A. Muñoz-Morris, L.M. Requejo: Acta Mater. Vol. 54 (2006), p.2335.

Google Scholar

[13] M.A. Montealegre, G. Strehl, J.L. González-Carrasco, G. Borchardt: Intermetallics Vol. 13 (2005), p.896.

DOI: 10.1016/j.intermet.2005.02.003

Google Scholar

[14] D.G. Morris, M.A. Muñoz-Morris: Mater. Sci. Eng. A. Vol. 462 (2007), p.45.

Google Scholar

[15] V.S. Rao, R.G. Baligidad, V.S. Raja: Corrosion Science and Engineering Vol. 10 (2002) 73.

Google Scholar

[16] V.S. Rao, H.S. Kwon: J. Electrochem. Soc. Vol. 154 (2007) C255.

Google Scholar

[17] F. Rosalbino, R. Carlini, R. Parodi, G. Zanicchi: Electrochim. Acta. Vol. 62 (2012), p.305.

Google Scholar

[18] M. Negache, K. Taibi, N. Souami, H. Bouchemel, R. Belkada: Intermetallics Vol. 36 (2013), p.73–80.

DOI: 10.1016/j.intermet.2013.01.001

Google Scholar

[19] R.A. Rodríguez-Díaz, J. Uruchurtu-Chavarín, A. Molina-Ocampo, J. Porcayo-Calderón, M. González-Pérez, J.M. López-Oglesby, J.G. Gonzalez-Rodríguez, J.A. Juárez-Islas: Int. J. Electrochem. Sci. Vol. 8 (2013), p.958.

Google Scholar

[20] T.N. Kutz, D. Zander: Corrosion Vol. 73 (2017), p.648.

Google Scholar

[21] F. Rosalbino, R. Carlini, G. Zanicchi, G. Scavino: Mater. Corros. Vol. 67 (2016), p.1042.

Google Scholar

[22] L. Troselius: Corros. Sci. Vol. 11 (1971), p.473.

Google Scholar

[23] P. Brito, É. Schuller, J. Silva, T.R. Campos, C.R.D. Araújo, J.R. Carneiro: Corros. Sci. Vol. 126 (2017).

Google Scholar