The Influence of Temperature on the Tribological Properties of the Ti6Al4V Alloy Treated by Plasma Oxidation

Article Preview

Abstract:

The purpose of the plasma oxidation process is to increase the hardness, corrosion resistance and to improve the biocompatibility properties of Ti6Al4V alloys by thickening the natural oxide in the material, which is produced by this treatment. The aim of this work is to verify the effect of temperature on the thickness, hardness and wear resistance of the Ti6Al4V alloy treated with plasma oxidation. The treatment was performed using a Pulsed DC vacuum reactor, with a gas ratio of 60% Ar and 40% O2 and 1.65 torr pressure for 1 hour of treatment, at temperatures of 480°C, 520°C, 670°C and 705°C. In regards to the multilayer formation of anatase and rutile, it was observed that the layer thickness increased as the treatment temperature increased. The increase of surface hardness provided by the treatment caused a considerable increase in the wear resistance of the studied material. The greatest layer thickness and surface hardness were obtained for the material treated at 705°C, but the lowest wear volume was obtained for the material treated at 520°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

418-423

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.D. Callister Jr, D.G. Rethwisch: Ciência e Engenharia de Materiais: Uma Introdução. (LTC, Nenith ed. Rio de Janeiro, 2016).

Google Scholar

[2] L. Ceschini, E. Lanzoni, C. Martini, D. Prandstraller, G. Sambogna: Wear Vol. 264 (1-2) (2008), p.86.

DOI: 10.1016/j.wear.2007.01.045

Google Scholar

[3] M.J. Donachie: Titanium: a Technical Guide. 9Materials Park, Second ed. Ohio, 2000).

Google Scholar

[4] C. Leyens, M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications.: (Wiley – VCH Verlag GmbH & CO Weinheim, 2003).

Google Scholar

[5] C.H.S. Pereira: Um estudo sobre a dureza e os mecanismos de desgaste de materiais metálicos em altas temperaturas. Trabalho de Conclusão de Curso (Graduação em Engenharia de Materiais), UFSC, Florianópolis, (2010).

DOI: 10.11606/t.3.2007.tde-08052007-165239

Google Scholar

[6] G. Gautam: Thermal oxidation of Ti6Al4V for bio-implementation. Master (Dissertation). Odisha, 2011. National Institute of Technology Rourkela (NITR). (IN).

Google Scholar

[7] S.E. Espindola: Influência da oxidação térmica sobre as propriedades da liga Ti6Al4V para aplicações em próteses – tratamento térmico de 5 horas em ar ambiente. Tecnologias para competitividade industrial, Florianópolis, n. esp. (2012) 92-104.

DOI: 10.18624/e-tech.v0i0.225

Google Scholar

[8] J. Lucchiari, N. Bergamaschi. Investigação eletroquímica da superfície de titânio tratada por oxidação térmica. Doutorado (Tese). Florianópolis, 2014. Universidade Federal de Santa Catarina (UFSC). (SC).

DOI: 10.5196/physicae.v11i11.311

Google Scholar

[9] D.A.H. Hanaor, C.C. Sorrell: Journal of Materials Science Vol. 46 (4) (2011), p.855.

Google Scholar

[10] A. Biswas, J.D. Majumdar: Materials Characterization Vol. 60 (6) (2009), p.513.

Google Scholar

[11] F. Borgioli, E. Galvanetto, F. Iozzelli, G. Pradelli: Materials Letters Vol. 59 (17) (2005), p.2159.

DOI: 10.1016/j.matlet.2005.02.054

Google Scholar

[12] Y. Luo, W. Chen, M. Tian, S. Teng: Tribology International Vol. 89 (2015), p.67.

Google Scholar

[13] H. Güleryüz, H. Çimenoğlu: Biomaterials Vol. 25 (2004), p.3325.

Google Scholar

[14] I. Hacisalioglu, F. Yildiz, A. Alsaran, G. Purcek: Materials Science and Engineering Vol. 174 (1) (2017), p.012055.

Google Scholar

[15] M.A.M. Silva, P.V.A. Guerra, R.A.M. Valentim, H.R. Hékis, K.D. Coutinho, N.C.L.B. Guerra: Revista Brasileira de Inovação Tecnológica em Saúde ISSN, 2 (2015), p.59.

DOI: 10.18816/r-bits.v5i2.7249

Google Scholar

[16] K.L. Rutherford, I.M. Hutchings: Surface and Coatings Technology Vol. 79 (1996), p.231.

Google Scholar

[17] H.L. Du, P.K. Datta, D.B. Lewis, J.S. Burnell-Gray: Corrosion Science Vol. 36 (4) (1994), p.631.

Google Scholar

[18] E. Gemelli, N.H.A. Camargo. Oxidation kinetics of commercially pure titanium. Revista Matéria Vol. 12 (3) (2007), p.525.

DOI: 10.1590/s1517-70762007000300014

Google Scholar

[19] J.O. Pereira Neto, R.O.D. Silva, E.H.D. Silva, J.A. Moreto, R.M. Bandeira, M.D. Manfrinato, L.S. Rossino: Materials Research Vol. 19 (6) (2016), p.1241.

DOI: 10.1590/1980-5373-mr-2015-0656

Google Scholar